期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Type Synthesis of Two-Degrees-of-Freedom Rotational Parallel Mechanism with Two Continuous Rotational Axes 被引量:19
1
作者 XU Yundou ZHANG Dongsheng +2 位作者 WANG Min YAO Jiantao ZHAO Yongsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期694-702,共9页
The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration... The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration,and motion control,which allows for a variety of application prospects.However,no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed,and there are only a few types of 2R-PM with two CRAs.Thus,a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established.First,combining the theories of reciprocal screw and space geometry,the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored,which give the 2R-PM two CRAs.The different distributions of the constraint forces in each branch are also studied.On the basis of the obtained structural constraints of branches,and considering the geometric relationships of constraint forces in each branch,the appropriate kinematic chains are constructed.Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint,a series of new 2R-PMs with two CRAs are finally obtained. 展开更多
关键词 type synthesis continuous rotational axes two rotational degrees of freedom parallel mechanism constraint force
下载PDF
Calibration and validation of a sand model considering the effects of wave-induced principal stress axes rotation
2
作者 LIU Peng WANG Zhongtao +1 位作者 LI Xinzhong CHAN Andrew 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第7期105-115,共11页
Principal stress axes rotation influences the stress-strain behavior of sand under wave loading. A constitutive model for sand, which considers principal stress orientation and is based on generalized plasticity theor... Principal stress axes rotation influences the stress-strain behavior of sand under wave loading. A constitutive model for sand, which considers principal stress orientation and is based on generalized plasticity theory, is proposed. The new model, which employs stress invariants and a discrete memory factor during reloading, is original because it quantifies model parameters using experimental data. Four sets of hollow torsion experiments were conducted to calibrate the parameters and predict the capability of the proposed model, which describes the effects of principal stress orientation on the behavior of sand. The results prove the effectiveness of the proposed calibration method. 展开更多
关键词 principal stress axes rotation constitutive model hollow torsional shear experiment
下载PDF
THE GENERAL STRESS STRAIN RELATION OF SOILS INVOLVING THE ROTATION OF PRINCIPAL STRESS AXES
3
作者 刘元雪 郑颖人 陈正汉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第5期437-444,共8页
In the light of matrix theory, the character of stress increment which causes the rotation of principal stress axes is analysed and the general stress increment is decomposed into two parts: coaxial part and rotationa... In the light of matrix theory, the character of stress increment which causes the rotation of principal stress axes is analysed and the general stress increment is decomposed into two parts: coaxial part and rotational part. Based on these, the complex three dimensional (3-D) problem involving the rotation of principal stress axes is simplified to the combination of the 3-D coaxial model and the theory about pure rotation of principal stress axes that is only around one principal stress axes. The difficulty of analysis is reduced significantly. The concrete calculating method of general 3-D problem is provided and other applications are also presented. 展开更多
关键词 matrix theory principal stress axes rotation decomposition of stress increment stress strain relation SOILS
全文增补中
Stiffness Degradation of Undisturbed Saturated Soft Clay in the Yangtze Estuary Under Complex Stress Conditions 被引量:6
4
作者 栾茂田 刘功勋 +1 位作者 王忠涛 郭莹 《China Ocean Engineering》 SCIE EI 2010年第3期523-538,共16页
Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian ... Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on the saturated soft marine clay in the Yangtze Estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does.Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined. 展开更多
关键词 undisturbed saturated soft clay complex stress condition stiffness degradation three-directional anisotropic consolidation continuous rotation of principal stress axes cyclic coupling shear test cyclic torsional shear test
下载PDF
A STRESS VECTOR-BASED CONSTITUTIVE MODEL FOR COHESIONLESS SOIL (Ⅰ)-THEORY
5
作者 SHI Hong-yan(史宏彦) +1 位作者 XIE Djng-yi(谢定义) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第3期329-340,共12页
On the basis of the sufficient consideration of vectorial characteristics of stress, a new nonlinear constitutive model for cohesionless soil under plane strain and 3-D conditions was presented in a way that the actio... On the basis of the sufficient consideration of vectorial characteristics of stress, a new nonlinear constitutive model for cohesionless soil under plane strain and 3-D conditions was presented in a way that the action effects of stress vector are decomposed into the action effect of mean effective stress and that of the stress ratio vector (ratio of deviatoric stress vector to mean effective stress). The constitutive model can take account of the influence of both numerical and directional changes of stress vector on deformation of soil simultaneously, and is applicable of both static and dynamic loading. 展开更多
关键词 cohesionless soil rotation of principal stress axes intermediate principal stress stress vector constitutive model THEORY
下载PDF
A STRESS VECTOR-BASED CONSTITUTIVE MODEL FOR COHESIONLESS SOIL (Ⅱ)-APPLICATION
6
作者 史宏彦 谢定义 白琳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第7期842-853,共12页
The stress vector-based constitutive model for cohesionless soil, proposed by SHI Hong-yan et al., was applied to analyze the deformation behaviors of materials subjected to various stress paths. The result of analysi... The stress vector-based constitutive model for cohesionless soil, proposed by SHI Hong-yan et al., was applied to analyze the deformation behaviors of materials subjected to various stress paths. The result of analysis shows that the constitutive model can capture well the main deformation behavior of cohesionless soil, such as stress-strain nonlinearity, hardening property, dilatancy, stress path dependency, non-coaxiality between the principal stress and the principal strain increment directions, and the coupling of mean effective and deviatoric stress with deformation. In addition, the model can also take into account the rotation of principal stress axes and the influence of intermediate principal stress on deformation and strength of soil simultaneously. The excellent agreement between the predicted and measured behavior indicates the comprehensive applicability of the model. 展开更多
关键词 cohesionless soil rotation of principal stress axes stress vector constitutive model APPLICATION
下载PDF
Three Dimension Finite Element Analysis of the Influence Factors of Stress Responses in the Roadbed and Ground under a Moving Load
7
作者 Guoxing Chen Kunming Mao 《Journal of Civil Engineering and Architecture》 2010年第1期60-66,共7页
Focusing on the vibration of the roadbed and ground induced by high-speed train load, a three dimensional finite element model which includes the roadbed and horizontal layered site is established to study how the sit... Focusing on the vibration of the roadbed and ground induced by high-speed train load, a three dimensional finite element model which includes the roadbed and horizontal layered site is established to study how the site conditions, the load moving speed and the depth of the soil element influence the soil element stress response. Based on a track-subsoil analytical model in which the rail is simulated as an Euler-Bernoulli beam resting on Winkler foundation in the vertical plane, the reaction force between the sleeper and roadbed excited by a single axle is presented, and then that is exerted on relevant elements to simulate the moving load. The dynamic response in the roadbed and subsoil excited by a single axle moving load is computed based on the parallel computing platform of the ABAQUS finite element software, and the stress time-history, stress path and curves of the principal stress axes rotation of the soil element under the track are presented. The results show that: the soil element stress path is an apple-shaped curve in the horizontal shear stress τd versus the stress difference (σsh - σch )/2 coordinate system; the principal stress axes rotate 180° for the soil element under the load moving line during the load running, and the stress state changes from the pure shear to triaxial shear and then back to the pure shear again. The element dynamic stress increases as the moving load speed increases, which increases sharply when the load speed approaches the Rayleigh wave velocity of soil layer; the site conditions and the soil element depth affect the soil element stress path significantly. 展开更多
关键词 Stress state principal stress axes rotation stress path moving load ABAQUS parallel computing platform
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部