The two component molecules of the co-crystal 0.69(C18H2ON206).0.31(C18H18N2O6) lie on a center-of-inversion that exists midway along the ethylene chain connecting the two aromatic rings. The two molecules are sup...The two component molecules of the co-crystal 0.69(C18H2ON206).0.31(C18H18N2O6) lie on a center-of-inversion that exists midway along the ethylene chain connecting the two aromatic rings. The two molecules are superimposed. The crystal is also a non-morohedral twin with a minor 37.7(2)% component. The refinement of this twinned and disordered crystal structure is detailed. Crystal data: C18H19.38N2O6, monoclinic, P21/c, a = 17.1687(8), b = 5.4389(2), c = 9.3261(4) A, b = 95.270(5)° and V= 867.18(6) A3 at -173 ℃.展开更多
Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated.We calculate the nanowires under tensile or compressive loads, different length nanowires, and different...Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated.We calculate the nanowires under tensile or compressive loads, different length nanowires, and different twin boundary nanowires respectively. The Young modulus of nanowires under compressive load is about twice that under tensile load.The compressive properties of twin gold nanowires are superior to their tensile properties. For different length nanowires,there is a critical value of length with respect to the mechanical properties. When the length of nanowire is greater than the critical value, its mechanical properties are sensitive to length. The twin boundary spacing hardly affects the mechanical properties.展开更多
Present work focuses on analysis of the stress and strain fields inside and around the individual {10–12} twin in magnesium alloy. The 3D crystal plasticity model represents twin as an ellipsoidal inclusion surrounde...Present work focuses on analysis of the stress and strain fields inside and around the individual {10–12} twin in magnesium alloy. The 3D crystal plasticity model represents twin as an ellipsoidal inclusion surrounded by the matrix. Five different twin thicknesses and three different lateral twin lengths are used for stress/strain analysis. The simulations are complemented with experimental observations using high-resolution electron backscattered diffraction. The simulations and experiments show a similar distribution of the shear stress and the spatial activity of individual slip systems(basal, prismatic, pyramidal). Plasticity induced inside the twin is dominantly caused by the prismatic dislocations slip and does not influence twin back stress which is identical to pure elastic twin. The twin with larger lateral dimension requires lower equilibrium stress which suggests anisotropic twin propagation and increased thickness of such twins. The lateral twin propagation is mostly influenced by prismatic and pyramidal slip in the twin vicinity. The twin thickness can reach a maximal level that is driven by the critical resolved shear stress values for dislocation slip with the significant influence of basal slip.展开更多
The present paper examines the temperature sensitivity of tensile twinning in a magnesium single crystal during nanoindentation of the prismatic plane. High temperature indentations from 25 ℃ to 250 ℃ were employed ...The present paper examines the temperature sensitivity of tensile twinning in a magnesium single crystal during nanoindentation of the prismatic plane. High temperature indentations from 25 ℃ to 250 ℃ were employed on a well polished magnesium single crystal {10-10}plane. For a indentation curve displaying a pop-in, a single twin was seen on the sample surface using Atomic Force Microscopy(AFM)imaging. For indentations that produced no pop-in, no twinning was observed. We thus conclude the pop-in arises from a twinning event in the present case. With increasing temperature, the mean pop-in load(measured from 200 repeat indentations of each testing temperature)drops markedly. This is interpreted by the thermal activation of nucleation of lattice dislocations, which immediately trigger a twinning event.Thermal activation analysis yields activation energies that are consistent with this idea. With increasing temperature the pop-ins became deeper and the twins, after further indentation, showed more growth. It is likely that non-basal slip is activated in the stress concentrations that arise during twinning and the thermal activation of this slip accounts for the observed temperature effects. It is concluded that in interpreting the temperature sensitivity of twinning stresses, any associated lattice dislocation activity must be considered.展开更多
Magnesium(Mg)single crystal specimens with three different orientations were prepared and tested from room temperature to 733 K in order to systematically evaluate effects of temperature on the critical resolved shear...Magnesium(Mg)single crystal specimens with three different orientations were prepared and tested from room temperature to 733 K in order to systematically evaluate effects of temperature on the critical resolved shear stress(CRSS)of slips and twinning in Mg single crystals.The duplex non-basal slip took place in the temperature range from 613 to 733 K when the single crystal samples were stretched along the<0110>direction.In contrast,the single basal slip and prismatic slip were mainly activated in the temperature range from RT to 733 K when the tensile directions were inclined at an angle of 45°with the basal and the prismatic plane,respectively.Viscoplastic self-consistent(VPSC)crystal modeling simulations with genetic algorithm code(GA-code)were carried out to obtain the best fitted CRSSs of major deformation modes,such as basal slip,prismatic slip,pyramidalⅡ,{1012}tensile twinning and{1011}compressive twinning when duplex slips accommodated deformation.Additionally,CRSSs of the basal and the prismatic slip were derived using the Schmid factor(SF)criterion when the single slip mainly accommodated deformation.From the CRSSs of major deformation modes obtained by the VPSC simulations and the SF calculations,the CRSSs for basal slip and{1012}tensile twinning were found to show a weak temperature dependence,whereas those for prismatic,slip and{1011}compressive twinning exhibited a strong temperature dependence.From the comparison of previous results,VPSC-GA modeling was proved to be an effective method to obtain the CRSSs of various deformation modes of Mg and its alloys.展开更多
Reaction of dimers of (R) thionophosphine sulfide (R = P - C6H4OMe,SMe ) with Co, (CO), yields the novel hexacobalt cluster [Co'(μ3, -S)2, (CO) 14 (μ4 -μ4- and the trinuclear clusterPSCH,)J 2' In 1, tw0 Co3...Reaction of dimers of (R) thionophosphine sulfide (R = P - C6H4OMe,SMe ) with Co, (CO), yields the novel hexacobalt cluster [Co'(μ3, -S)2, (CO) 14 (μ4 -μ4- and the trinuclear clusterPSCH,)J 2' In 1, tw0 Co3S(C0)7 units linked by a novel phosphido-thio1ato bifunc-tiona1 bridging p'-SPR ligand as backbone.展开更多
In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending ...In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending tester.We prepared two single-crystal samples,oriented along the<1120>and<1010>directions,to assess the mechanisms of deformation when the initial basal slip was suppressed.In the<1120>sample,the primary{1012}twin(T1)was confirmed along the<1120>direction of the sample on the compression side with an increase in bending stress.In the<1010>sample,T1 and the secondary twin(T2)were confirmed to be along the<1120>direction,with an orientation of±60°with respect to the bending stress direction,and their direction matched with(0001)in T1 and T2.This result implies that crystallographically,the basal slip occurs readily.In addition,the<1010>sample showed the double twin in T1 on the compression side and the tertiary twin along the<1010>direction on the tension side.These results demonstrated that the maximum bending stress and displacement changed significantly under the bend loading because the deformation mechanisms were different for these single crystals.Therefore,the correlation between bending behavior and twin orientation was determined,which would be helpful for optimizing the bending properties of Mg-based materials.展开更多
To investigate the deformation twinning and the plastic anisotropy of the hexagonal-close-packed(HCP) single crystal, the crystal plastic constitutive model including slip and twinning deformation was established wi...To investigate the deformation twinning and the plastic anisotropy of the hexagonal-close-packed(HCP) single crystal, the crystal plastic constitutive model including slip and twinning deformation was established with finite element method based on crystal plasticity theory. The model was verified by test data. Newton-Raphson iteration method was developed with the stress components directly as the basic variables of iteration. The plastic deformation behavior of single crystal AZ31 alloy was analyzed numerically under monotonic tension and compression, respectively, in four different strain paths(i.e. along 〈2110〉, 〈 0110〉, 〈0001〉 and 〈0111〉) with this model. The stress-strain curves were obtained in the above paths. The numerical calculation results show that this crystal model is feasible to predict the activity of slip/twinning system and to describe the number of active twin variants, the types of dominant twin variants and twin intersection. Due to the polar nature of mechanical twinning in inelastic deformation of the material, the plastic behavior of the single crystal material is demonstrated to be notably anisotropic and high asymmetry.展开更多
Experiments and visco-plastic self-consistent (VPSC) simulations were used to quantify the amount of twinning and the relationship to stress?strain behavior in a textured Mg?3Al?1Zn plate. Two different compression di...Experiments and visco-plastic self-consistent (VPSC) simulations were used to quantify the amount of twinning and the relationship to stress?strain behavior in a textured Mg?3Al?1Zn plate. Two different compression directions were utilized to favor{1012} extension or{1011} compression twinning.{1012} twins nucleate at the beginning of plastic deformation and grow to consume the parent grains completely. During compression along the normal direction,{1011} twinning and{1011}?{1012} double twinning start at strain of 0.05, and the number of twins increases until rupture, above strain of 0.15.{1011} and{1011}?{1012} twinning also occur during compression along the transverse direction, start at strain of 0.06 and then multiply in grains totally reoriented by{1012} twins. Using suitable parameters, the VPSC model can accurately predict the occurrence of extension, compression and double-twinning as well as the flow stresses and deformed textures. According to VPSC simulations, twinning and slip have the same latent hardening parameters.展开更多
A combined experimental and computational analysis is performed to investigate the less commonly studied embryo-to-lamella transition of deformation twins in magnesium. This work aims to understand the structural vari...A combined experimental and computational analysis is performed to investigate the less commonly studied embryo-to-lamella transition of deformation twins in magnesium. This work aims to understand the structural variables controlling the embryo-to-lamella transition from grain boundaries. Statistical analysis of hundreds of early-stage twins in the lightly deformed microstructure reveals a prevailing wedge shape,with a much thicker base along the grain boundary(GB) where they originate and a thinner tip terminating in the crystal. The analysis also shows that the GB base is super thick and identifies a minimum GB twin thickness among all early-stage twins that is about one micron. A crystal plasticity-based full-field model is employed to calculate the driving forces to migrate the boundary of a three-dimensional GB twin embryo. The stress analysis, considering a full range of embryo shapes and neighboring grain orientations, indicate that the twin embryo is most likely going to form a wedge shape when it first propagates. The calculations predict that the thickness of the embryo at the GB needs to be significantly larger than its length into the crystal in order to propagate into the crystal. The analysis finds that the more aligned the twin embryo variant is with basal slip in the neighboring grain, the thinner the twin embryo needed for propagation.展开更多
Martensitic transformations, martensitic structures and substructures of Ni50Mn29Ga21Tb1.2 shape memory alloy were studied by DTA, X-ray diffraction and electron diffraction. The results show that the mainly phase at...Martensitic transformations, martensitic structures and substructures of Ni50Mn29Ga21Tb1.2 shape memory alloy were studied by DTA, X-ray diffraction and electron diffraction. The results show that the mainly phase at room temperature has body-centred tetragonal structure with the lattice parameters : a = b = 0.60 ran, c = 0.5546 nm; and has body-centred monoclinic with lattice parameters: a =0.616 nm, b =0.581 nm, c = 0.553 nm, β = 90.8° in some tiny area. The substructures of Ni50Mn29Ga21Tb1.2 at room temperature are twin.展开更多
In this study,the role of twin-twin interactions on the distributions of local defects(e.g.,dislocations)and stress fields in a magnesium alloy is investigated.A co-zone(1012)-(1012)tensile twin junction in a deformed...In this study,the role of twin-twin interactions on the distributions of local defects(e.g.,dislocations)and stress fields in a magnesium alloy is investigated.A co-zone(1012)-(1012)tensile twin junction in a deformed Mg-3wt.%Y alloy is analyzed using transmission electron microscopy(TEM).The results show that the morphology of the impinging(1012)twin is asymmetric,and the non-interacting boundary of the recipient(1012)twin is irregular.Detailed analysis of TEM images reveals that type-II pyramidal[1213](1212)dislocations concentrate in the vicinity of the twin-twin junction site.The same<c+a>dislocations are also observed inside the interacting twin domains along with a few <a> dislocations.The<c+a>dislocations emanating from the impinging(1012)twin boundary have edge character and are extended with faults parallel to the basal plane.In contrast,the<c+a>dislocations connected to the recipient(1012)twin are predominantly screw orientation and compact.Elasto-viscoplastic fast Fourier transform based crystal plasticity calculations are performed to rationalize the observed twin morphology and local dislocation distribution.The model calculations suggest that the local stress fields generated at the junction site where the two twins meet are responsible for the experimentally observed concentration of<c+a>dislocations.The calculated stress fields are asymmetric with respect to the junction site,explaining the observed asymmetric morphology of the impinging twin.Overall,these findings show strong effects of twin-twin interactions on the distribution of dislocations as well as the evolution of the twinned microstructure and as such,can help advance understanding of twinning in Mg alloys and their effect on mechanical behavior.展开更多
A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self...A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self-consistent(EPSC)and crystal plasticity finite element(CPFE)frameworks for grain-scale simulations.A computationally efficient EPSC model was first employed to estimate the critical resolved shear stress and hardening parameters of the slip and twin systems available in a hexagonal close-packed magnesium alloy,ZEK100.The constitutive parameters were thereafter refined using the CPFE.The crystal plasticity frameworks incorporated with the temperature-dependent constitutive model were used to predict stress–strain curves in macroscale and lattice strains in microscale at different testing temperatures up to 200℃.In particular,the predictions by the crystal plasticity models were compared with the measured lattice strain data at the elevated temperatures by in situ high-energy X-ray diffraction,for the first time.The comparison in the multiscale improved the fidelity of the developed temperature-dependent constitutive model and validated the assumption with regard to the temperature dependency of available slip and twin systems in the magnesium alloy.Finally,this work provides a time-efficient and precise modeling scheme for magnesium alloys at elevated temperatures.展开更多
Large size polysynthetically twinned crystals of Ti-46 Al-8 Nb alloy with a parallel lamellar microstructure were successfully prepared using a Ti-43 Al-3 Si seed by our new operation.A large amount of columnar B2 pha...Large size polysynthetically twinned crystals of Ti-46 Al-8 Nb alloy with a parallel lamellar microstructure were successfully prepared using a Ti-43 Al-3 Si seed by our new operation.A large amount of columnar B2 phase paralleling to the growth direction was found in the final lamellar microstructure.Higher growth rate(>30 mm/h)led to the failure of seeding process.Based on these results,a new mechanism is proposed to describe the seeding process of the hypo-peritectic Ti Al alloys.The peritecticαphase is suggested to directly nucleate from the melt,and then act as nucleus for transformedαphase in the subsequentβtoαtransformation.At the higher growth rate,the appearance ofβphase secondary dendrites and homogeneous nucleation lead to the failure of seeding process.High Nb addition leads to a large amount of residualβphase,and theseβdendrites finally evolve into B2 phase.The room temperature tensile elongation was measured to be 11.9-18.5%for Ti-46 Al-8 Nb PST crystals,which is the highest ever reported value for Ti Al based alloys.展开更多
Developing efficient and robust electrocatalysts toward ethanol oxidation reaction(EOR)with high C1 pathway selectivity is critical for commercialization of direct ethanol fuel cells(DEFCs).Unfortunately,current most ...Developing efficient and robust electrocatalysts toward ethanol oxidation reaction(EOR)with high C1 pathway selectivity is critical for commercialization of direct ethanol fuel cells(DEFCs).Unfortunately,current most EOR electrocatalysts suffer from rapid activity degradation and poor C1 pathway selectivity for complete oxidation of ethanol.Herein,we report a novel electrocatalyst of five-fold twinned(FFT)Ir-alloyed Pt nanorods(NRs)toward EOR.Such FFT Pt-Ir NRs bounded by five(100)facets on the sides and ten(111)facets at two ends possess high percentage of(100)facets with tensile strain.Owing to the inherent characteristics of the FFT NR and Ir alloying,the as-prepared FFT Pt-Ir NRs display excellent alkaline EOR performance with a mass activity(MA)of 4.18 A·mgPt^(-1),a specific activity(SA)of 10.22 mA·cm^(-2),and a Faraday efficiency of 61.21%for the C1 pathway,which are 6.85,5.62,and 7.70 times higher than those of a commercial Pt black,respectively.Besides,our catalyst also exhibits robust durability.The large percentage of open tensile-strained(100)facets and Ir alloying significantly promote the cleavage of C-C bonds and facilitate oxidation of the poisonous intermediates,leading to the transformation of the dominant reaction pathway for EOR from C2 to C1 pathway,and effectively suppress the deactivation of the catalyst.展开更多
基金the University of Malaya (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study
文摘The two component molecules of the co-crystal 0.69(C18H2ON206).0.31(C18H18N2O6) lie on a center-of-inversion that exists midway along the ethylene chain connecting the two aromatic rings. The two molecules are superimposed. The crystal is also a non-morohedral twin with a minor 37.7(2)% component. The refinement of this twinned and disordered crystal structure is detailed. Crystal data: C18H19.38N2O6, monoclinic, P21/c, a = 17.1687(8), b = 5.4389(2), c = 9.3261(4) A, b = 95.270(5)° and V= 867.18(6) A3 at -173 ℃.
基金supported by the National Science and Technology Pillar Program,China(Grant No.2015BAK17B06)the Earthquake Industry Special Science Research Foundation Project,China(Grant No.201508026-02)+1 种基金the Natural Science Foundation of Heilongjiang Province,China(Grant No.A201310)the Scientific Research Starting Foundation for Post Doctorate of Heilongjiang Province,China(Grant No.LBHQ13040)
文摘Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated.We calculate the nanowires under tensile or compressive loads, different length nanowires, and different twin boundary nanowires respectively. The Young modulus of nanowires under compressive load is about twice that under tensile load.The compressive properties of twin gold nanowires are superior to their tensile properties. For different length nanowires,there is a critical value of length with respect to the mechanical properties. When the length of nanowire is greater than the critical value, its mechanical properties are sensitive to length. The twin boundary spacing hardly affects the mechanical properties.
基金supported by the Czech Science Foundation via the project 18-07140Sfinancial support by Thermo Fisher Scientific and Czech-Slovak Microscopy Society in the scope of the grant program for young researchers。
文摘Present work focuses on analysis of the stress and strain fields inside and around the individual {10–12} twin in magnesium alloy. The 3D crystal plasticity model represents twin as an ellipsoidal inclusion surrounded by the matrix. Five different twin thicknesses and three different lateral twin lengths are used for stress/strain analysis. The simulations are complemented with experimental observations using high-resolution electron backscattered diffraction. The simulations and experiments show a similar distribution of the shear stress and the spatial activity of individual slip systems(basal, prismatic, pyramidal). Plasticity induced inside the twin is dominantly caused by the prismatic dislocations slip and does not influence twin back stress which is identical to pure elastic twin. The twin with larger lateral dimension requires lower equilibrium stress which suggests anisotropic twin propagation and increased thickness of such twins. The lateral twin propagation is mostly influenced by prismatic and pyramidal slip in the twin vicinity. The twin thickness can reach a maximal level that is driven by the critical resolved shear stress values for dislocation slip with the significant influence of basal slip.
基金financial support of the Australian Discovery Grant scheme DP140102355 and DP150101577the National Natural Science Foundation of China 51901169the scholarship provided by Chinese scholarship council(CSC)。
文摘The present paper examines the temperature sensitivity of tensile twinning in a magnesium single crystal during nanoindentation of the prismatic plane. High temperature indentations from 25 ℃ to 250 ℃ were employed on a well polished magnesium single crystal {10-10}plane. For a indentation curve displaying a pop-in, a single twin was seen on the sample surface using Atomic Force Microscopy(AFM)imaging. For indentations that produced no pop-in, no twinning was observed. We thus conclude the pop-in arises from a twinning event in the present case. With increasing temperature, the mean pop-in load(measured from 200 repeat indentations of each testing temperature)drops markedly. This is interpreted by the thermal activation of nucleation of lattice dislocations, which immediately trigger a twinning event.Thermal activation analysis yields activation energies that are consistent with this idea. With increasing temperature the pop-ins became deeper and the twins, after further indentation, showed more growth. It is likely that non-basal slip is activated in the stress concentrations that arise during twinning and the thermal activation of this slip accounts for the observed temperature effects. It is concluded that in interpreting the temperature sensitivity of twinning stresses, any associated lattice dislocation activity must be considered.
基金supported by the Ministry of Science and Higher Education of the Russian Federation for financial support under the Megagrant(no.075-15-2022-1133)the National Research Foundation(NRF)grant funded by the Ministry of Science and ICT(2015R1A2A1A01006795)of Korea through the Research Institute of Advanced Materials。
文摘Magnesium(Mg)single crystal specimens with three different orientations were prepared and tested from room temperature to 733 K in order to systematically evaluate effects of temperature on the critical resolved shear stress(CRSS)of slips and twinning in Mg single crystals.The duplex non-basal slip took place in the temperature range from 613 to 733 K when the single crystal samples were stretched along the<0110>direction.In contrast,the single basal slip and prismatic slip were mainly activated in the temperature range from RT to 733 K when the tensile directions were inclined at an angle of 45°with the basal and the prismatic plane,respectively.Viscoplastic self-consistent(VPSC)crystal modeling simulations with genetic algorithm code(GA-code)were carried out to obtain the best fitted CRSSs of major deformation modes,such as basal slip,prismatic slip,pyramidalⅡ,{1012}tensile twinning and{1011}compressive twinning when duplex slips accommodated deformation.Additionally,CRSSs of the basal and the prismatic slip were derived using the Schmid factor(SF)criterion when the single slip mainly accommodated deformation.From the CRSSs of major deformation modes obtained by the VPSC simulations and the SF calculations,the CRSSs for basal slip and{1012}tensile twinning were found to show a weak temperature dependence,whereas those for prismatic,slip and{1011}compressive twinning exhibited a strong temperature dependence.From the comparison of previous results,VPSC-GA modeling was proved to be an effective method to obtain the CRSSs of various deformation modes of Mg and its alloys.
文摘Reaction of dimers of (R) thionophosphine sulfide (R = P - C6H4OMe,SMe ) with Co, (CO), yields the novel hexacobalt cluster [Co'(μ3, -S)2, (CO) 14 (μ4 -μ4- and the trinuclear clusterPSCH,)J 2' In 1, tw0 Co3S(C0)7 units linked by a novel phosphido-thio1ato bifunc-tiona1 bridging p'-SPR ligand as backbone.
基金supported by The AMADA FOUNDATION[grant number AF-2022030-B3]JSPS KAKENHI[grant numbers JP16K05961 and JP19K04065]。
文摘In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending tester.We prepared two single-crystal samples,oriented along the<1120>and<1010>directions,to assess the mechanisms of deformation when the initial basal slip was suppressed.In the<1120>sample,the primary{1012}twin(T1)was confirmed along the<1120>direction of the sample on the compression side with an increase in bending stress.In the<1010>sample,T1 and the secondary twin(T2)were confirmed to be along the<1120>direction,with an orientation of±60°with respect to the bending stress direction,and their direction matched with(0001)in T1 and T2.This result implies that crystallographically,the basal slip occurs readily.In addition,the<1010>sample showed the double twin in T1 on the compression side and the tertiary twin along the<1010>direction on the tension side.These results demonstrated that the maximum bending stress and displacement changed significantly under the bend loading because the deformation mechanisms were different for these single crystals.Therefore,the correlation between bending behavior and twin orientation was determined,which would be helpful for optimizing the bending properties of Mg-based materials.
基金Projects(11272094,11072064)supported by the National Natural Science Foundation of ChinaProject(LGZX201101)supported by the Laboratory Center of Guangxi Science and Technology,ChinaProject(1074023)supported by the Science Foundation of Guangxi University of Science&Technology,China
文摘To investigate the deformation twinning and the plastic anisotropy of the hexagonal-close-packed(HCP) single crystal, the crystal plastic constitutive model including slip and twinning deformation was established with finite element method based on crystal plasticity theory. The model was verified by test data. Newton-Raphson iteration method was developed with the stress components directly as the basic variables of iteration. The plastic deformation behavior of single crystal AZ31 alloy was analyzed numerically under monotonic tension and compression, respectively, in four different strain paths(i.e. along 〈2110〉, 〈 0110〉, 〈0001〉 and 〈0111〉) with this model. The stress-strain curves were obtained in the above paths. The numerical calculation results show that this crystal model is feasible to predict the activity of slip/twinning system and to describe the number of active twin variants, the types of dominant twin variants and twin intersection. Due to the polar nature of mechanical twinning in inelastic deformation of the material, the plastic behavior of the single crystal material is demonstrated to be notably anisotropic and high asymmetry.
基金Project(2013CB632204)supported by the National Basic Research Program of ChinaProject(51350110332)supported by the National Natural Science Foundation of China
文摘Experiments and visco-plastic self-consistent (VPSC) simulations were used to quantify the amount of twinning and the relationship to stress?strain behavior in a textured Mg?3Al?1Zn plate. Two different compression directions were utilized to favor{1012} extension or{1011} compression twinning.{1012} twins nucleate at the beginning of plastic deformation and grow to consume the parent grains completely. During compression along the normal direction,{1011} twinning and{1011}?{1012} double twinning start at strain of 0.05, and the number of twins increases until rupture, above strain of 0.15.{1011} and{1011}?{1012} twinning also occur during compression along the transverse direction, start at strain of 0.06 and then multiply in grains totally reoriented by{1012} twins. Using suitable parameters, the VPSC model can accurately predict the occurrence of extension, compression and double-twinning as well as the flow stresses and deformed textures. According to VPSC simulations, twinning and slip have the same latent hardening parameters.
基金funded by the U.S.Dept.of Energy,Office of Basic Energy Sciences Project FWP 06SCPE401support by the National Science Foundation under Grant Number 2051390。
文摘A combined experimental and computational analysis is performed to investigate the less commonly studied embryo-to-lamella transition of deformation twins in magnesium. This work aims to understand the structural variables controlling the embryo-to-lamella transition from grain boundaries. Statistical analysis of hundreds of early-stage twins in the lightly deformed microstructure reveals a prevailing wedge shape,with a much thicker base along the grain boundary(GB) where they originate and a thinner tip terminating in the crystal. The analysis also shows that the GB base is super thick and identifies a minimum GB twin thickness among all early-stage twins that is about one micron. A crystal plasticity-based full-field model is employed to calculate the driving forces to migrate the boundary of a three-dimensional GB twin embryo. The stress analysis, considering a full range of embryo shapes and neighboring grain orientations, indicate that the twin embryo is most likely going to form a wedge shape when it first propagates. The calculations predict that the thickness of the embryo at the GB needs to be significantly larger than its length into the crystal in order to propagate into the crystal. The analysis finds that the more aligned the twin embryo variant is with basal slip in the neighboring grain, the thinner the twin embryo needed for propagation.
文摘Martensitic transformations, martensitic structures and substructures of Ni50Mn29Ga21Tb1.2 shape memory alloy were studied by DTA, X-ray diffraction and electron diffraction. The results show that the mainly phase at room temperature has body-centred tetragonal structure with the lattice parameters : a = b = 0.60 ran, c = 0.5546 nm; and has body-centred monoclinic with lattice parameters: a =0.616 nm, b =0.581 nm, c = 0.553 nm, β = 90.8° in some tiny area. The substructures of Ni50Mn29Ga21Tb1.2 at room temperature are twin.
基金support from the U.S.Dept.of Energy,Office of Basic Energy Sciences Project FWP 06SCPE401support from the National Science Foundation under Grant Number 2051390the financial support from the National Science Foundation CMMI-1723539,the financial support from the National Science Foundation CMMI-1729829。
文摘In this study,the role of twin-twin interactions on the distributions of local defects(e.g.,dislocations)and stress fields in a magnesium alloy is investigated.A co-zone(1012)-(1012)tensile twin junction in a deformed Mg-3wt.%Y alloy is analyzed using transmission electron microscopy(TEM).The results show that the morphology of the impinging(1012)twin is asymmetric,and the non-interacting boundary of the recipient(1012)twin is irregular.Detailed analysis of TEM images reveals that type-II pyramidal[1213](1212)dislocations concentrate in the vicinity of the twin-twin junction site.The same<c+a>dislocations are also observed inside the interacting twin domains along with a few <a> dislocations.The<c+a>dislocations emanating from the impinging(1012)twin boundary have edge character and are extended with faults parallel to the basal plane.In contrast,the<c+a>dislocations connected to the recipient(1012)twin are predominantly screw orientation and compact.Elasto-viscoplastic fast Fourier transform based crystal plasticity calculations are performed to rationalize the observed twin morphology and local dislocation distribution.The model calculations suggest that the local stress fields generated at the junction site where the two twins meet are responsible for the experimentally observed concentration of<c+a>dislocations.The calculated stress fields are asymmetric with respect to the junction site,explaining the observed asymmetric morphology of the impinging twin.Overall,these findings show strong effects of twin-twin interactions on the distribution of dislocations as well as the evolution of the twinned microstructure and as such,can help advance understanding of twinning in Mg alloys and their effect on mechanical behavior.
基金the supports by the Fundamental Research Program of the Korea Institute of Materials Science(KIMS,PNK7760)。
文摘A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self-consistent(EPSC)and crystal plasticity finite element(CPFE)frameworks for grain-scale simulations.A computationally efficient EPSC model was first employed to estimate the critical resolved shear stress and hardening parameters of the slip and twin systems available in a hexagonal close-packed magnesium alloy,ZEK100.The constitutive parameters were thereafter refined using the CPFE.The crystal plasticity frameworks incorporated with the temperature-dependent constitutive model were used to predict stress–strain curves in macroscale and lattice strains in microscale at different testing temperatures up to 200℃.In particular,the predictions by the crystal plasticity models were compared with the measured lattice strain data at the elevated temperatures by in situ high-energy X-ray diffraction,for the first time.The comparison in the multiscale improved the fidelity of the developed temperature-dependent constitutive model and validated the assumption with regard to the temperature dependency of available slip and twin systems in the magnesium alloy.Finally,this work provides a time-efficient and precise modeling scheme for magnesium alloys at elevated temperatures.
基金National Natural Science Foundation of China(No.51701209)National Key Research and Development Program of China(Nos.2016YFB0701304)。
文摘Large size polysynthetically twinned crystals of Ti-46 Al-8 Nb alloy with a parallel lamellar microstructure were successfully prepared using a Ti-43 Al-3 Si seed by our new operation.A large amount of columnar B2 phase paralleling to the growth direction was found in the final lamellar microstructure.Higher growth rate(>30 mm/h)led to the failure of seeding process.Based on these results,a new mechanism is proposed to describe the seeding process of the hypo-peritectic Ti Al alloys.The peritecticαphase is suggested to directly nucleate from the melt,and then act as nucleus for transformedαphase in the subsequentβtoαtransformation.At the higher growth rate,the appearance ofβphase secondary dendrites and homogeneous nucleation lead to the failure of seeding process.High Nb addition leads to a large amount of residualβphase,and theseβdendrites finally evolve into B2 phase.The room temperature tensile elongation was measured to be 11.9-18.5%for Ti-46 Al-8 Nb PST crystals,which is the highest ever reported value for Ti Al based alloys.
基金This work was supported by the National Natural Science Foundation of China(No.21908036)the China Postdoctoral Science Foundation(No.2019M662143)+1 种基金the Natural Science Foundation of Anhui Province(No.2008085QB74)the Fundamental Research Funds for the Central Universities(No.JZ2021HGTB0116).
文摘Developing efficient and robust electrocatalysts toward ethanol oxidation reaction(EOR)with high C1 pathway selectivity is critical for commercialization of direct ethanol fuel cells(DEFCs).Unfortunately,current most EOR electrocatalysts suffer from rapid activity degradation and poor C1 pathway selectivity for complete oxidation of ethanol.Herein,we report a novel electrocatalyst of five-fold twinned(FFT)Ir-alloyed Pt nanorods(NRs)toward EOR.Such FFT Pt-Ir NRs bounded by five(100)facets on the sides and ten(111)facets at two ends possess high percentage of(100)facets with tensile strain.Owing to the inherent characteristics of the FFT NR and Ir alloying,the as-prepared FFT Pt-Ir NRs display excellent alkaline EOR performance with a mass activity(MA)of 4.18 A·mgPt^(-1),a specific activity(SA)of 10.22 mA·cm^(-2),and a Faraday efficiency of 61.21%for the C1 pathway,which are 6.85,5.62,and 7.70 times higher than those of a commercial Pt black,respectively.Besides,our catalyst also exhibits robust durability.The large percentage of open tensile-strained(100)facets and Ir alloying significantly promote the cleavage of C-C bonds and facilitate oxidation of the poisonous intermediates,leading to the transformation of the dominant reaction pathway for EOR from C2 to C1 pathway,and effectively suppress the deactivation of the catalyst.