期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Interface property of dissimilar Ti-6Al-4V/AA1050 composite laminate made by non-equal channel lateral co-extrusion and heat treatment
1
作者 Juan Liao Mengmeng Tian Xin Xue 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期197-208,共12页
The purpose of this paper is to examine the effect of processing parameters and subsequent heat treatments on the microstructures and bonding strengths of Ti-6Al-4V/AA1050 laminations formed via a non-equal channel la... The purpose of this paper is to examine the effect of processing parameters and subsequent heat treatments on the microstructures and bonding strengths of Ti-6Al-4V/AA1050 laminations formed via a non-equal channel lateral co-extrusion process.The microstructural evolution and growth mechanism in the diffusion layer were discussed further to optimize the bonding quality by appropriately adjusting process parameters.Scanning electron microscopes(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD)were used to characterize interfacial diffusion layers.The shear test was used to determine the mechanical properties of the interfacial diffusion layer.The experimental results indicate that it is possible to co-extrusion Ti-6Al-4V/AA1050 compound profiles using non-equal channel lateral co-extrusion.Different heat treatment processes affect the thickness of the diffusion layer.When the temperature and time of heat treatment increase,the thickness of the reaction layers increases dramatically.Additionally,the shear strength of the Ti-6Al-4V/AA1050 composite interface is proportional to the diffusion layer thickness.It is observed that a medium interface thickness results in superior mechanical performance when compared to neither a greater nor a lesser interface thickness.Microstructural characterization of all heat treatments reveals that the only intermetallic compound observed in the diffusion layers is TiAl_(3).Due to the inter-diffusion of Ti and Al atoms,the TiAl_(3) layer grows primarily at AA1050/TiAl_(3) interfaces. 展开更多
关键词 Shear strength co-extrusion Heat treatment Microstructure Intermetallic compounds
下载PDF
Effect of hydro co-extrusion on microstructure of duo-cast Al3003/Al4004 clad materials 被引量:1
2
作者 In-Soo SON Sang-Pill LEE +7 位作者 Jin-Kyung LEE Woo-Cheol KIM Ji-Seon MOON Sangmok LEE Jong-Sup LEE Yong-Bae KIM Geun-Ahn LEE Dong-Su BAE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第S1期75-80,共6页
The effects of hydro co-extrusion on the microstructure changes of aluminum hybrid duo-cast Al 3003/Al 4004 clad materials were studied. The specimen of duo-cast Al 3003/Al 4004 clad materials was in circle shape, and... The effects of hydro co-extrusion on the microstructure changes of aluminum hybrid duo-cast Al 3003/Al 4004 clad materials were studied. The specimen of duo-cast Al 3003/Al 4004 clad materials was in circle shape, and was composed of Al 3003(outside) and Al 4004(inside) materials. The specimen was extruded by the hydro co-extrusion equipment. The manufacturing conditions of the specimen were 423 K in temperature and 5 in extrusion ratio. The dimensions of the specimen were 80 mm in diameter of the Al 4004 material and 35 mm in thickness of the Al 3003 material before the hydro co-extrusion process, and 30 mm in diameter and about 5 mm in thickness after the extrusion process, respectively. The microstructure and the hardness for two specimens were investigated. The hardness value of cross section in the duo-cast Al 3003/Al 4004 clad materials before the extrusion process was increased in form of the parabola toward the center. However, after the extrusion process, it was almost constant in the portion of Al 4004 material. Lots of big voids above 1 mm in diameter in the specimen existed in the interfacing region of Al 3003 and Al 4004 materials before the extrusion process. These big voids disappeared after the process of hydro co-extrusion. 展开更多
关键词 clad materials hydro co-extrusion process duo-casting MICROSTRUCTURE
下载PDF
Bending analysis of five-layer curved functionally graded sandwich panel in magnetic field:closed-form solution 被引量:1
3
作者 M.SHABAN H.MAZAHERI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第2期251-274,共24页
In this paper,an exact closed-form solution for a curved sandwich panel with two piezoelectric layers as actuator and sensor that are inserted in the top and bottom facings is presented.The core is made from functiona... In this paper,an exact closed-form solution for a curved sandwich panel with two piezoelectric layers as actuator and sensor that are inserted in the top and bottom facings is presented.The core is made from functionally graded(FG)material that has heterogeneous power-law distribution through the radial coordinate.It is assumed that the core is subjected to a magnetic field whereas the core is covered by two insulated composite layers.To determine the exact solution,first characteristic equations are derived for different material types in a polar coordinate system,namely,magneto-elastic,elastic,and electro-elastic for the FG,orthotropic,and piezoelectric materials,respectively.The displacement-based method is used instead of the stress-based method to derive a set of closed-form real-valued solutions for both real and complex roots.Based on the elasticity theory,exact solutions for the governing equations are determined layer-by-layer that are considerably more accurate than typical simplified theories.The accuracy of the presented method is compared and validated with the available literature and the finite element simulation.The effects of geometrical and material parameters such as FG index,angular span along with external conditions such as magnetic field,mechanical pressure,and electrical difference are investigated in detail through numerical examples. 展开更多
关键词 five-layer sandwich panel piezoelectric material closed-form solution functionally graded(FG)material magnetic field
下载PDF
Encapsulation of Almond Essential Oil by Co-Extrusion/Gelling Using Chitosan as Wall Material 被引量:1
4
作者 Capablanca Lucía Ferrándiz Marcela López Ainhoa 《Journal of Encapsulation and Adsorption Sciences》 2017年第1期67-74,共8页
Encapsulation confers protection to substances as essential oils from processes like oxidation, evaporation or uncontrolled release. In this study almond oil capsules were obtained by co-extrusion/gelling technique. C... Encapsulation confers protection to substances as essential oils from processes like oxidation, evaporation or uncontrolled release. In this study almond oil capsules were obtained by co-extrusion/gelling technique. Chitosan was used as shell material and sodium triphosphate pentabasic as cross linking agent. Different encapsulation process variables were studied: cross-linker concentration, nozzles size and potential. Optical microscopy was used to determine the capsules morphology and degradability tests were performed in order to study capsules degradation over time. Results showed that nozzles size and cross linking concentration are key variables to consider in the encapsulation process. Degradability tests showed rapid weight loss. 展开更多
关键词 CHITOSAN ALMOND Oil TTP co-extrusion/Gelling
下载PDF
Microencapsulation of Rosemary Essential Oil by Co-Extrusion/Gelling Using Alginate as a Wall Material 被引量:1
5
作者 Celia Dolcà Marcela Ferrándiz +4 位作者 Lucia Capablanca Esther Franco Elena Mira Fernanda López David García 《Journal of Encapsulation and Adsorption Sciences》 2015年第3期121-130,共10页
An essential oil is the volatile lipophilic component extracted from plants. Microencapsulation systems protect the essential oil from degradation and evaporation, and at the same time allow a sustained release. This ... An essential oil is the volatile lipophilic component extracted from plants. Microencapsulation systems protect the essential oil from degradation and evaporation, and at the same time allow a sustained release. This work analyzed and characterized the rosemary essential oil microcapsules prepared by co-extrusion technique using alginate as wall material and calcium chloride as cross linker. Several instrumental techniques were used: optical microscopy, coulter counter, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), termogravimetric analysis (TGA), spectrophotometry, antimicrobial test and chromatography. Results show that rosemary oil has pesticidal properties, and its microencapsulation allows knowing that these properties remain inside the microcapsules. 展开更多
关键词 Sodium Alginate Rosemary Oil co-extrusion GELLING FTIR DSC TGA
下载PDF
Microstructure and Mechanical Behavior of Mg-Based Bimetal Plates with High Formability Sleeve by Co-extrusion 被引量:1
6
作者 Yue-Hui Dang Sheng-Lin Liu +6 位作者 Xiao-Lei Ai Xiao-Wei Feng Bo Feng Zhuo Tian Ying-Fei Lin Huan-Tao Chen Kai-Hong Zheng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第3期499-512,共14页
In this study,microstructure and mechanical behavior of two types of Mg-based bimetal plates with a high formability sleeve were systematically studied,with a great emphasis on the effect of the interface characterist... In this study,microstructure and mechanical behavior of two types of Mg-based bimetal plates with a high formability sleeve were systematically studied,with a great emphasis on the effect of the interface characteristic and the sleeve fraction on the plasticity of composite plates.The rule of mixtures(ROM)for elongation was also addressed.The results show that when there is no or thin diffusion layer with thickness of about 3μm,Mg-based bimetal plates have a good plasticity with elongation of about 19-24%,and the ROM predicted elongations are very close to the experimental ones.In contrast,with a diffusion layer about 95-155μm thick,Mg-based bimetal plates exhibit a poor plasticity with elongation of about 11-17%,and the experimental elongations largely deviate from the ROM predictions.The plasticity of Mg-based bimetal plates increases with increasing sleeve fraction.This study provides new insights on the plastic deformation of Mg-based bimetal composites with a high formability sleeve. 展开更多
关键词 Mg-based composites co-extrusion MICROSTRUCTURE Mechanical behavior Plastic deformation
原文传递
Production of AZ80/Al composite rods employing non-equal channel lateral extrusion 被引量:4
7
作者 Mohammad ASGARI Faramarz FERESHTEH-SANIEE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1276-1283,共8页
In order to simultaneously take the advantages of magnesium and aluminum alloys, AZ80/A1 composite rods were produced using non-equal channel lateral extrusion (NECLE) process at different temperatures. Scanning ele... In order to simultaneously take the advantages of magnesium and aluminum alloys, AZ80/A1 composite rods were produced using non-equal channel lateral extrusion (NECLE) process at different temperatures. Scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) tests as well as the shear punch test were employed to study the quality and strength of the bond between the two alloys. It was found that the process temperature was an important factor affecting the level of interfacial bonding, such that increasing the temperature from 250 to 300℃ has improved the strength by 37% and the thickness of the bond between the layers by 4.5%. Moreover, this temperature rise reduced the maximum required forming load by 13%. However, the hardness tests showed that this increase in the process temperature resulted in 4% decrease in the hardness of the composite bar. 展开更多
关键词 bimetallic composite magnesium alloy aluminum alloy mechanical properties co-extrusion welding non-equal channel lateral extrusion
下载PDF
Application of Antimicrobial Microcapsules on Agrotextiles
8
作者 Marcela Ferrándiz Lucia Capablanca +1 位作者 David García Ma ángeles Bonet 《Journal of Agricultural Chemistry and Environment》 2017年第1期62-82,共21页
The aim of this work was to develop a functional biodegradable nonwoven with antimicrobial microcapsules maintaining the stability and biodegradability of the nonwoven for use in agriculture applications. The nonwoven... The aim of this work was to develop a functional biodegradable nonwoven with antimicrobial microcapsules maintaining the stability and biodegradability of the nonwoven for use in agriculture applications. The nonwoven was obtained using hemp fibers by Wetlaid technology. Microcapsules were prepared by co-extrusion/gelling method with alginate as shell and oregano oil as core material. The microcapsules were developed to protect and control release of oregano oil. Microcapsules were incorporated on the nonwoven by coating method using a natural polymer as a graft material. After incorporating micro-capsules, the nonwoven was subjected to several tests in order to determinate the microcapsules fixation and their functionality. The nonwovens were characterized for their antimicrobial activity against different kinds of bacteria and fungi. Nonwoven loaded with microcapsules was found to show good antimicrobial activity in comparison with nonwoven that was not loaded with microcapsules. 展开更多
关键词 MICROCAPSULES Oregano OIL co-extrusion and GELLING Coating HEMP Agrotextil and ANTIMICROBIAL Activity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部