In this paper, classification models are used as tools to make final decision. Fuzzy method provides the mathematical tools for quantitative analysis and dealing with ambiguous concepts. Analytic Hierarchy Process (AH...In this paper, classification models are used as tools to make final decision. Fuzzy method provides the mathematical tools for quantitative analysis and dealing with ambiguous concepts. Analytic Hierarchy Process (AHP) is used to obtain the weight of each index and enables examiners to visualize the decision process and obtain more reasonable evaluation values to solve some problems. An example is given at the end of this paper.展开更多
To solve the high-dimensionality issue and improve its accuracy in credit risk assessment,a high-dimensionality-trait-driven learning paradigm is proposed for feature extraction and classifier selection.The proposed p...To solve the high-dimensionality issue and improve its accuracy in credit risk assessment,a high-dimensionality-trait-driven learning paradigm is proposed for feature extraction and classifier selection.The proposed paradigm consists of three main stages:categorization of high dimensional data,high-dimensionality-trait-driven feature extraction,and high-dimensionality-trait-driven classifier selection.In the first stage,according to the definition of high-dimensionality and the relationship between sample size and feature dimensions,the high-dimensionality traits of credit dataset are further categorized into two types:100<feature dimensions<sample size,and feature dimensions≥sample size.In the second stage,some typical feature extraction methods are tested regarding the two categories of high dimensionality.In the final stage,four types of classifiers are performed to evaluate credit risk considering different high-dimensionality traits.For the purpose of illustration and verification,credit classification experiments are performed on two publicly available credit risk datasets,and the results show that the proposed high-dimensionality-trait-driven learning paradigm for feature extraction and classifier selection is effective in handling high-dimensional credit classification issues and improving credit classification accuracy relative to the benchmark models listed in this study.展开更多
Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to cr...Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to credit card transactions are two prevalent issues in the current study field of CCFD,which significantly impact classification models’performance.To address these issues,this research proposes a novel CCFD model based on Multifeature Fusion and Generative Adversarial Networks(MFGAN).The MFGAN model consists of two modules:a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified highdimensional feature space,and a balance module based on the generative adversarial network to decrease the class imbalance ratio.The effectiveness of theMFGAN model is validated on two actual credit card datasets.The impacts of different class balance ratios on the performance of the four resamplingmodels are analyzed,and the contribution of the two different modules to the performance of the MFGAN model is investigated via ablation experiments.Experimental results demonstrate that the proposed model does better than state-of-the-art models in terms of recall,F1,and Area Under the Curve(AUC)metrics,which means that the MFGAN model can help banks find more fraudulent transactions and reduce fraud losses.展开更多
Peer-to-peer (P2P) lending offers an alternative way to access credit. Unlike established lending institutions with proven credit risk management practices, P2P platforms rely on numerous independent variables to eval...Peer-to-peer (P2P) lending offers an alternative way to access credit. Unlike established lending institutions with proven credit risk management practices, P2P platforms rely on numerous independent variables to evaluate loan applicants’ creditworthiness. This study aims to estimate default probabilities using a mixture-of-experts neural network in P2P lending. The approach involves coupling unsupervised clustering to capture essential data properties with a classification algorithm based on the mixture-of-experts structure. This classic design enhances model capacity without significant computational overhead. The model was tested using P2P data from Lending Club, comparing it to other methods like Logistic Regression, AdaBoost, Gradient Boosting, Decision Tree, Support Vector Machine, and Random Forest. The hybrid model demonstrated superior performance, with a Mean Squared Error reduction of at least 25%.展开更多
Credit card fraudulent data is highly imbalanced, and it has presented an overwhelmingly large portion of nonfraudulent transactions and a small portion of fraudulent transactions. The measures used to judge the verac...Credit card fraudulent data is highly imbalanced, and it has presented an overwhelmingly large portion of nonfraudulent transactions and a small portion of fraudulent transactions. The measures used to judge the veracity of the detection algorithms become critical to the deployment of a model that accurately scores fraudulent transactions taking into account case imbalance, and the cost of identifying a case as genuine when, in fact, the case is a fraudulent transaction. In this paper, a new criterion to judge classification algorithms, which considers the cost of misclassification, is proposed, and several undersampling techniques are compared by this new criterion. At the same time, a weighted support vector machine (SVM) algorithm considering the financial cost of misclassification is introduced, proving to be more practical for credit card fraud detection than traditional methodologies. This weighted SVM uses transaction balances as weights for fraudulent transactions, and a uniformed weight for nonfraudulent transactions. The results show this strategy greatly improve performance of credit card fraud detection.展开更多
In order to improve the performance of support vector machine (SVM) applications in the field of credit risk evaluation, an adaptive Lq SVM model with Gauss kernel (ALqG-SVM) is proposed to evaluate credit risks. The ...In order to improve the performance of support vector machine (SVM) applications in the field of credit risk evaluation, an adaptive Lq SVM model with Gauss kernel (ALqG-SVM) is proposed to evaluate credit risks. The non-adaptive penalty of the object function is extended to (0, 2] to increase classification accuracy. To further improve the generalization performance of the proposed model, the Gauss kernel is introduced, thus the non-linear classification problem can be linearly separated in higher dimensional feature space. Two UCI credit datasets and a real life credit dataset from a US major commercial bank are used to check the efficiency of this model. Compared with other popular methods, satisfactory results are obtained through a novel method in the area of credit risk evaluation. So the new model is an excellent choice.展开更多
文摘In this paper, classification models are used as tools to make final decision. Fuzzy method provides the mathematical tools for quantitative analysis and dealing with ambiguous concepts. Analytic Hierarchy Process (AHP) is used to obtain the weight of each index and enables examiners to visualize the decision process and obtain more reasonable evaluation values to solve some problems. An example is given at the end of this paper.
基金This work is partially supported by grants from the Key Program of National Natural Science Foundation of China(NSFC Nos.71631005 and 71731009)the Major Program of the National Social Science Foundation of China(No.19ZDA103).
文摘To solve the high-dimensionality issue and improve its accuracy in credit risk assessment,a high-dimensionality-trait-driven learning paradigm is proposed for feature extraction and classifier selection.The proposed paradigm consists of three main stages:categorization of high dimensional data,high-dimensionality-trait-driven feature extraction,and high-dimensionality-trait-driven classifier selection.In the first stage,according to the definition of high-dimensionality and the relationship between sample size and feature dimensions,the high-dimensionality traits of credit dataset are further categorized into two types:100<feature dimensions<sample size,and feature dimensions≥sample size.In the second stage,some typical feature extraction methods are tested regarding the two categories of high dimensionality.In the final stage,four types of classifiers are performed to evaluate credit risk considering different high-dimensionality traits.For the purpose of illustration and verification,credit classification experiments are performed on two publicly available credit risk datasets,and the results show that the proposed high-dimensionality-trait-driven learning paradigm for feature extraction and classifier selection is effective in handling high-dimensional credit classification issues and improving credit classification accuracy relative to the benchmark models listed in this study.
基金supported by the National Key R&D Program of China(Nos.2022YFB3104103,and 2019QY1406)the National Natural Science Foundation of China(Nos.61732022,61732004,61672020,and 62072131).
文摘Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to credit card transactions are two prevalent issues in the current study field of CCFD,which significantly impact classification models’performance.To address these issues,this research proposes a novel CCFD model based on Multifeature Fusion and Generative Adversarial Networks(MFGAN).The MFGAN model consists of two modules:a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified highdimensional feature space,and a balance module based on the generative adversarial network to decrease the class imbalance ratio.The effectiveness of theMFGAN model is validated on two actual credit card datasets.The impacts of different class balance ratios on the performance of the four resamplingmodels are analyzed,and the contribution of the two different modules to the performance of the MFGAN model is investigated via ablation experiments.Experimental results demonstrate that the proposed model does better than state-of-the-art models in terms of recall,F1,and Area Under the Curve(AUC)metrics,which means that the MFGAN model can help banks find more fraudulent transactions and reduce fraud losses.
文摘Peer-to-peer (P2P) lending offers an alternative way to access credit. Unlike established lending institutions with proven credit risk management practices, P2P platforms rely on numerous independent variables to evaluate loan applicants’ creditworthiness. This study aims to estimate default probabilities using a mixture-of-experts neural network in P2P lending. The approach involves coupling unsupervised clustering to capture essential data properties with a classification algorithm based on the mixture-of-experts structure. This classic design enhances model capacity without significant computational overhead. The model was tested using P2P data from Lending Club, comparing it to other methods like Logistic Regression, AdaBoost, Gradient Boosting, Decision Tree, Support Vector Machine, and Random Forest. The hybrid model demonstrated superior performance, with a Mean Squared Error reduction of at least 25%.
文摘Credit card fraudulent data is highly imbalanced, and it has presented an overwhelmingly large portion of nonfraudulent transactions and a small portion of fraudulent transactions. The measures used to judge the veracity of the detection algorithms become critical to the deployment of a model that accurately scores fraudulent transactions taking into account case imbalance, and the cost of identifying a case as genuine when, in fact, the case is a fraudulent transaction. In this paper, a new criterion to judge classification algorithms, which considers the cost of misclassification, is proposed, and several undersampling techniques are compared by this new criterion. At the same time, a weighted support vector machine (SVM) algorithm considering the financial cost of misclassification is introduced, proving to be more practical for credit card fraud detection than traditional methodologies. This weighted SVM uses transaction balances as weights for fraudulent transactions, and a uniformed weight for nonfraudulent transactions. The results show this strategy greatly improve performance of credit card fraud detection.
基金The National Natural Science Foundation of China (No.70531040)the National Basic Research Program of China (973 Program) (No.2004CB720103)
文摘In order to improve the performance of support vector machine (SVM) applications in the field of credit risk evaluation, an adaptive Lq SVM model with Gauss kernel (ALqG-SVM) is proposed to evaluate credit risks. The non-adaptive penalty of the object function is extended to (0, 2] to increase classification accuracy. To further improve the generalization performance of the proposed model, the Gauss kernel is introduced, thus the non-linear classification problem can be linearly separated in higher dimensional feature space. Two UCI credit datasets and a real life credit dataset from a US major commercial bank are used to check the efficiency of this model. Compared with other popular methods, satisfactory results are obtained through a novel method in the area of credit risk evaluation. So the new model is an excellent choice.