Scale effect of ISWs loads on Floating Production Storage and Offloading(FPSO) is studied in this paper. The application conditions of KdV, eKdV and MCC ISWs theories are used in the numerical method. The depthaverage...Scale effect of ISWs loads on Floating Production Storage and Offloading(FPSO) is studied in this paper. The application conditions of KdV, eKdV and MCC ISWs theories are used in the numerical method. The depthaveraged velocities induced by ISWs are used for the velocity-inlet boundary. Three scale ratio numerical models λ=1, 20 and 300 were selected, which the scale ratio is the size ratio of numerical models to the experimental model.The comparisons between the numerical and former experimental results are performed to verify the feasibility of numerical method. The comparisons between the numerical and simplified theoretical results are performed to discuss the applicability of the simplified theoretical model summarized from the load experiments. Firstly, the numerical results of λ=1 numerical model showed a good agreement with former experimental and simplified theoretical results. It is feasible to simulate the ISWs loads on FPSO by the numerical method. Secondly, the comparisons between the results of three scale ratio numerical models and experimental results indicated that the scale ratios have more significant influence on the experimental horizontal forces than the vertical forces. The scale effect of horizontal forces mainly results from the different viscosity effects associated with the model’s dimension.Finally, through the comparisons between the numerical and simplified theoretical results for three scale ratio models, the simplified theoretical model of the pressure difference and friction forces exerted by ISWs on FPSO is applied for large-scale or full-scale FPSO.展开更多
Taizhou Bridge is the first kilometer level three-pylon two-span suspension bridge in the world and the structural complexity has significant effects on the seismic performance of the bridge. Shaking table test of Tai...Taizhou Bridge is the first kilometer level three-pylon two-span suspension bridge in the world and the structural complexity has significant effects on the seismic performance of the bridge. Shaking table test of Taizhou Bridge is arranged to investigate the effects of non-uniform ground motion input, collision between main and side spans and optimal seismic structural system. It's very important and difficult to design and manufacture the scaled down model of Taizhou Bridge used during the shaking table test. The key point is that the girder and pylons are very hard to be manufactured if the similarity ratio is strictly followed. Based on the finite element method (FEM) analysis, a simplified scaled down model is designed and the bending stiffness of the girder and pylon are strictly simulated, and the torsion stiffness and axial stiffness are not strictly simulated. The inner forces and displacements of critical sections, points of simplified model and theoretical model are compared by FEM analysis, and it's found out that the difference between the seismic responses is relatively small. So, the simplified model can be used to conduct the shaking table test by the FEM verification.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.11372184)the National Basic Research Program of China(973 Program,Grant Nos.2015CB251203-3 and 2013CB036103)
文摘Scale effect of ISWs loads on Floating Production Storage and Offloading(FPSO) is studied in this paper. The application conditions of KdV, eKdV and MCC ISWs theories are used in the numerical method. The depthaveraged velocities induced by ISWs are used for the velocity-inlet boundary. Three scale ratio numerical models λ=1, 20 and 300 were selected, which the scale ratio is the size ratio of numerical models to the experimental model.The comparisons between the numerical and former experimental results are performed to verify the feasibility of numerical method. The comparisons between the numerical and simplified theoretical results are performed to discuss the applicability of the simplified theoretical model summarized from the load experiments. Firstly, the numerical results of λ=1 numerical model showed a good agreement with former experimental and simplified theoretical results. It is feasible to simulate the ISWs loads on FPSO by the numerical method. Secondly, the comparisons between the results of three scale ratio numerical models and experimental results indicated that the scale ratios have more significant influence on the experimental horizontal forces than the vertical forces. The scale effect of horizontal forces mainly results from the different viscosity effects associated with the model’s dimension.Finally, through the comparisons between the numerical and simplified theoretical results for three scale ratio models, the simplified theoretical model of the pressure difference and friction forces exerted by ISWs on FPSO is applied for large-scale or full-scale FPSO.
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)+2 种基金Natural Science Foundation of China(No.50708074)the Ministry of Science and Technology of China(No.SLDRCE08-B-04)Kwang-Hua Fund for College of Civil Engineering,Tongji University
文摘Taizhou Bridge is the first kilometer level three-pylon two-span suspension bridge in the world and the structural complexity has significant effects on the seismic performance of the bridge. Shaking table test of Taizhou Bridge is arranged to investigate the effects of non-uniform ground motion input, collision between main and side spans and optimal seismic structural system. It's very important and difficult to design and manufacture the scaled down model of Taizhou Bridge used during the shaking table test. The key point is that the girder and pylons are very hard to be manufactured if the similarity ratio is strictly followed. Based on the finite element method (FEM) analysis, a simplified scaled down model is designed and the bending stiffness of the girder and pylon are strictly simulated, and the torsion stiffness and axial stiffness are not strictly simulated. The inner forces and displacements of critical sections, points of simplified model and theoretical model are compared by FEM analysis, and it's found out that the difference between the seismic responses is relatively small. So, the simplified model can be used to conduct the shaking table test by the FEM verification.