Multiphase induction machine is normally controlled using rotor field oriented vector control. Under phase(s) loss, the machine currents can be optimally controlled to satisfy certain optimization criteria. In this ...Multiphase induction machine is normally controlled using rotor field oriented vector control. Under phase(s) loss, the machine currents can be optimally controlled to satisfy certain optimization criteria. In this paper, a vector control scheme to a five-phase induction machine is introduced to ensure equal phase currents and minimum torque ripples under a phase open circuit. The controller idea can be extended to any number of phases with any number of open phases. The fundamental dq components of the stator voltage are obtained using only two PI controllers for the fundamental sequence plane, as in conventional vector control of three-phase machines. Based on steady state model, a simple expression is derived to estimate the required dq voltage components of other sequence planes to ensure equal stator phase currents and minimum torque ripple. A five-phase machine is simulated using MATLAB/Simulink to ensure controller validity.展开更多
Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are...Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.展开更多
Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and spe...Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole-changing method for five-phase IM with a current sliding-mode control strategy. This control strategy employs the dual-plane (dr-q1 and d2-q2) vector control method, which allows the IM to operate under different pole modes. Current sliding-mode controllers are applied instead of conventional proportional integral (PI) controllers to adjust the current vectors, and exponential current response achieves a smooth transition between the d1-q1 and d2-q2 planes. Compared with the step response pole-changing with PI control method, the proposed pole-changing method greatly reduces the torque ripple and speed fluctuation of the IM during the pole-changing process. Experimental results verify the ex- ceptional performance of the proposed electrical pole-changing strategy.展开更多
Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculat...Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculating the fluctuating components are put forward.Simulation and computation results show that the rotor winding faults will cause electromagnetictorque and rotating speed to fluctuate; and fluctuating frequencies are the same and their magnitudewill increase with the rise of the severity of the faults. The load inertia affects the torque andspeed fluctuation, with the increase of inertia, the fluctuation of the torque will rise, while thecorresponding speed fluctuation will obviously decline.展开更多
In order to improve the thrust-power ratio index of the linear induction motor(LIM), a novel adaptive genetic algorithm (NAGA) is proposed for the design optimization of the LIM. A good-point set theory that helps...In order to improve the thrust-power ratio index of the linear induction motor(LIM), a novel adaptive genetic algorithm (NAGA) is proposed for the design optimization of the LIM. A good-point set theory that helps to produce a uniform initial population is used to enhance the optimization efficiency of the genetic algorithm. The crossover and mutation probabilities are improved by using the function of sigmoid and they can be adjusted nonlinearly between average fitness and maximal fitness with individual fitness. Based on the analyses of different structures between the LIM and the rotary induction motor (RIM) and referring to the analysis method of the RIM, the steady-state characteristics of the LIM that considers the end effects of the LIM is calculated and the optimal design model of the thrust-power ratio index is also presented. Through the comparison between the optimal scheme and the old scheme, the thrust-power ratio index of the LIM is obviously increased and the validity of the NAGA is proved.展开更多
Diode clamped multi-level inverter (DCMLI) has a wide application prospect in high-voltage and adjustable speed drive systems due to its low stress on switching devices, low harmonic output, and simple structure. Ho...Diode clamped multi-level inverter (DCMLI) has a wide application prospect in high-voltage and adjustable speed drive systems due to its low stress on switching devices, low harmonic output, and simple structure. However, the problem of complexity of selecting vectors and capacitor voltage unbalance needs to be solved when the algorithm of direct torque control (DTC) is implemented on DCMLI. In this paper, a fuzzy DTC system of an induction machine fed by a three-level neutral-point-clamped (NPC) inverter is proposed. After introducing fuzzy logic, optimal selecting switching state is realized by applying various strategies which can distinguish the grade of the errors of stator flux linkage, torque, the neutral-point potential, and the position of stator flux linkage. Consequently, the neutral-point potential unbalance, the dr/dr of output voltage and the switching loss are restrained effectively, and desirable dynamic and steady-state performances of induction machines can be obtained for the DTC scheme. A design method of the fuzzy controller is introduced in detail, and the relevant simulation and experimental results have verified the feasibility of the proposed control algorithm.展开更多
Brushless Doubly-Fed Machine has attracted considerable attention in recent years due to its advantages. It has the robustness of the squirrel cage induction machine, and the speed and power factor controllability of ...Brushless Doubly-Fed Machine has attracted considerable attention in recent years due to its advantages. It has the robustness of the squirrel cage induction machine, and the speed and power factor controllability of the synchronous machine as well as the absence of brushes and slip rings, and using a fractionally rated frequency converter. Hence, there are considerable benefits over the conventional machines, when the machine is applied to applications such as a wind turbine generator or high power adjustable speed drive. However, these benefits are obtained in slightly more complex structure, higher cost and larger dimensions in comparison to the conventional induction machine. This paper presents fundamental aspects of the three modes of operation of brushless doubly fed machine, i.e. simple induction mode, cascade induction mode, and synchronous mode. The investigation is performed by analyzing the spatial harmonic contents of the rotor magnetic flux density. The direct cross couplings between stator and rotor fields as well as, indirect cross coupling between stator fields by the special rotor of this machine is described. Furthermore, loss analysis of the machine in various modes is presented and the torque-speed curves for asynchronous modes are obtained. A 2-D magnetodynamic finite element model based on the D-180 4/8 pole prototype machine is extracted and simulated to verify the results.展开更多
A speed-sensorless vector control system for induction machines (IMs)is presented, According to the vector control theory of IMs, the rotor flux is estimated based on a flux observer,and the speed is estimated throu...A speed-sensorless vector control system for induction machines (IMs)is presented, According to the vector control theory of IMs, the rotor flux is estimated based on a flux observer,and the speed is estimated through the method of q-axis rotor flux converging on zero with proportional integral regulator, A 0.75 kW,50 Hz,two-pole induction machine was used in the simulation and experimental verification, The simulation model was constructed in Matlab. A series of tests were performed in the field weakening region, for both no-load and loaded operation. The estimated speed tracks the actual speed well in the based speed region and field weakening region ( 1 per unit value to 4 per unit value). The small estimation error of residual speed is due to the existence of slip.展开更多
To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a syn...To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS.展开更多
The air-gap flux density formula and thrust expression of long primary double sided linear induction machine(DLIM)in the secondary motion reference frame are deduced by using the Maxwell equations firstly.Then,by anal...The air-gap flux density formula and thrust expression of long primary double sided linear induction machine(DLIM)in the secondary motion reference frame are deduced by using the Maxwell equations firstly.Then,by analyzing the factors that affect the thrust ripple in the thrust expression,a shuttle type secondary structure of long primary DLIMs is proposed,and its thrust performances of the machine with different shuttle size combinations are simulated and compared with that of plate secondary long primary DLIM.Comparison results show that the new secondary structure can suppress the thrust ripple and improve the stability of system acceleration.展开更多
The research and application of the punching machine driven by a linear induction motor(LIM)are introduced.The fundamental principle, construction, performance and application are described. Comparing this new model m...The research and application of the punching machine driven by a linear induction motor(LIM)are introduced.The fundamental principle, construction, performance and application are described. Comparing this new model machine with its traditional form, the LIM driven punching machine has many great advantages, such as, simple construction, small size and mass, low production cost, short production time, easy to control, low noise and considerable energy saving.展开更多
Based on the principle of direct torque control,a DTC(Direct Torque Control)system with five-phase induction motor has been studied.Providing direct control of stator flux and electromagnetic torque by optimized volta...Based on the principle of direct torque control,a DTC(Direct Torque Control)system with five-phase induction motor has been studied.Providing direct control of stator flux and electromagnetic torque by optimized voltage vector,five-phase induction motor enhances flexibility of the invert states selection by increasing the number of voltage vectors,resulting in more precise control of stator flux and electromagnetic torque.The model of DTC for five-phase induction motor is constructed on equations and the method of approximate circle of torque track is used to conduct the simulation analysis of the system.The simulation results demonstrate that the DTC for five-phase induction motor control has merits of little calculation compared with vector control,simple structure,fast response and greater dynamic performance.展开更多
VFT (variable frequency transformer) has been recently used as art alternative to HVDC (high voltage direct current) to control power flow between asynchronous networks. VFT consumes less reactive power than a bac...VFT (variable frequency transformer) has been recently used as art alternative to HVDC (high voltage direct current) to control power flow between asynchronous networks. VFT consumes less reactive power than a back-to-back HVDC system, provides faster initial transient recovery, and has better natural damping capability. VFT is simply a DFIM (doubly-fed induction machine) where the machine torque controls the power flow from stator to rotor and vice versa. The main disadvantage of this VFT is the slip rings and brushes required for the rotor circuit, especially in bulk power transmission. The BDFM (brushless doubly-fed machine) with nested cage rotor machine is proved to be a comparable alternative to conventional DFIM in many applications with the advantage that all windings being in the stator frame with fixed output terminals. In this paper, the BDFM is used as a BVFT (brushless variable frequency transformer). A prototype machine is designed and simulated to verify the system validity.展开更多
Faults and failures of induction machines can indeed lead to excessive costs, hence, there is a strong demand in the industry for adopting diagnosis techniques to assess and evaluate current condition of electrical ma...Faults and failures of induction machines can indeed lead to excessive costs, hence, there is a strong demand in the industry for adopting diagnosis techniques to assess and evaluate current condition of electrical machines. Eccentricity related faults as well as clutch wobbling constitute major portions of the faults related to induction motors. This paper presents the effect of clutch wobbling and mixed eccentricity on induction machine stator currents and the possibility of distinguishing between each ailment via comparing the abnormal harmonics contained in stator current spectrums in each case. In this paper, the current spectrum of a four pole-pairs, 550 kW, induction machine were calculated for the cases of full symmetry, clutch wobbling, and mixed eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents. Zooms of the current spectrums, around the 50 Hz fundamental harmonic as well as of the main slot harmonic zone, of both calculated and measured currents are included. The spectrums presented in this paper rely on calculations that are performed with dedicated software which is owned by AGH University of Science and Technology.展开更多
Renewable energy production plays a major role in satisfying electricity demand.Wind power conversion is one of the most popular renewable energy sources compared to other sources.Wind energy conversion has two major ...Renewable energy production plays a major role in satisfying electricity demand.Wind power conversion is one of the most popular renewable energy sources compared to other sources.Wind energy conversion has two major types of generators such as the Permanent Magnet Synchronous Generator(PMSG)and the Doubly Fed Induction Generator(DFIG).The maximum power tracking algo-rithm is a crucial controller,a wind energy conversion system for generating maximum power in different wind speed conditions.In this article,the DFIG wind energy conversion system was developed in Matrix Laboratory(MATLAB)and designed a machine learning(ML)algorithm for the rotor and grid side converter.The ML algorithm has been developed and trained in a MATLAB environment.There are two types of learning algorithms such as supervised and unsupervised learning.In this research supervised learning is used to power the neural networks and analysis is made for various hidden layers and activation functions.Simulation results are assessed to demonstrate the efficiency of the proposed system.展开更多
The increasing penetration of renewable energy sources(RESs)brings great challenges to the frequency security of power systems.The traditional frequency-constrained unit commitment(FCUC)analyzes frequency by simplifyi...The increasing penetration of renewable energy sources(RESs)brings great challenges to the frequency security of power systems.The traditional frequency-constrained unit commitment(FCUC)analyzes frequency by simplifying the average system frequency and ignoring numerous induction machines(IMs)in load,which may underestimate the risk and increase the operational cost.In this paper,we consider a multiarea frequency response(MAFR)model to capture the frequency dynamics in the unit scheduling problem,in which regional frequency security and the inertia of IM load are modeled with high-dimension differential algebraic equations.A multi-area FCUC(MFCUC)is formulated as mixed-integer nonlinear programming(MINLP)on the basis of the MAFR model.Then,we develop a multi-direction decomposition algorithm to solve the MFCUC efficiently.The original MINLP is decomposed into a master problem and subproblems.The subproblems check the nonlinear frequency dynamics and generate linear optimization cuts for the master problem to improve the frequency security in its optimal solution.Case studies on the modified IEEE 39-bus system and IEEE 118-bus system show a great reduction in operational costs.Moreover,simulation results verify the ability of the proposed MAFR model to reflect regional frequency security and the available inertia of IMs in unit scheduling.展开更多
The inductances in d-q axis have an important influence on the behavior of PMSM (PM (permanent-magnet) synchronous machines). Their calculation is fundamental not only to evaluate the performance such as torque an...The inductances in d-q axis have an important influence on the behavior of PMSM (PM (permanent-magnet) synchronous machines). Their calculation is fundamental not only to evaluate the performance such as torque and field weakening capability but also to design the control system to maximize performance and power factor. This paper presents a study of inductance in the d-q axis for buried (i.e., IPMSM (interior) PM Synchronous Machines). This study is achieved using 2-D (two-dimensional) FEM (finite-element method) and Park's transformation.展开更多
In this paper,research into torque ripple production has been undertaken for both the healthy and open-circuit faulttolerant conditions of a five-phase permanent magnet(PM)machine by using the instantaneous power(I-Po...In this paper,research into torque ripple production has been undertaken for both the healthy and open-circuit faulttolerant conditions of a five-phase permanent magnet(PM)machine by using the instantaneous power(I-Power)approach.When only the fundamental component of the phase currents is applied to the phase windings,it has been shown that the 9th and 11th harmonics of the back-electromotive force(back-EMF)causes torque ripples in a five-phase PM machine and its frequency is ten times the frequency of the fundamental phase currents.When the combined fundamental and third harmonic components of the phase currents are applied to the phase windings,it has been shown that the 7th and 13th harmonic of the back-electromotive force(back-EMF)causes additional torque ripples in a five-phase PM machine.These torque ripples under fault-tolerant conditions have been analyzed analytically,as well.It has been proven that there are interactions between the fundamental component of current and the third harmonic component of the back-EMF and vice versa.These interactions cause torque ripples.A finite element analysis(FEA)model of the five-phase PM machine has been done to validate the analytical results.展开更多
Due to their excellent efficiency,power density and constant power speed region,interior permanent-magnet(IPM)machines are very suitable for electric vehicles(EVs).This paper proposed a new IPM rotor topology,which ca...Due to their excellent efficiency,power density and constant power speed region,interior permanent-magnet(IPM)machines are very suitable for electric vehicles(EVs).This paper proposed a new IPM rotor topology,which can offer high reluctance torque,wide constant power speed range and excellent overload capability.Besides,five rotor topologies with integral-slot distributed-windings IPM machines,including four existing IPM topologies and the proposed IPM topology,are designed optimally.Their characteristics,which include d-q axis inductances,saliency ratios,electromagnetic torques,corresponding torque ripples,back-electromotive forces(EMFs),overload capabilities and flux weakening performances are evaluated quantitatively.Finally,a three phase 48s8p hybrid rotor PM machine is built to verify the performances of the proposed IPM machine.This work provides some general concepts for machine developers who are willing to build IPM machines for high-performance EV applications.展开更多
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame...The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.展开更多
文摘Multiphase induction machine is normally controlled using rotor field oriented vector control. Under phase(s) loss, the machine currents can be optimally controlled to satisfy certain optimization criteria. In this paper, a vector control scheme to a five-phase induction machine is introduced to ensure equal phase currents and minimum torque ripples under a phase open circuit. The controller idea can be extended to any number of phases with any number of open phases. The fundamental dq components of the stator voltage are obtained using only two PI controllers for the fundamental sequence plane, as in conventional vector control of three-phase machines. Based on steady state model, a simple expression is derived to estimate the required dq voltage components of other sequence planes to ensure equal stator phase currents and minimum torque ripple. A five-phase machine is simulated using MATLAB/Simulink to ensure controller validity.
文摘Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.
基金Project supported by the National Basic Research Program(973)of China(No.2013CB035600)
文摘Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole-changing method for five-phase IM with a current sliding-mode control strategy. This control strategy employs the dual-plane (dr-q1 and d2-q2) vector control method, which allows the IM to operate under different pole modes. Current sliding-mode controllers are applied instead of conventional proportional integral (PI) controllers to adjust the current vectors, and exponential current response achieves a smooth transition between the d1-q1 and d2-q2 planes. Compared with the step response pole-changing with PI control method, the proposed pole-changing method greatly reduces the torque ripple and speed fluctuation of the IM during the pole-changing process. Experimental results verify the ex- ceptional performance of the proposed electrical pole-changing strategy.
文摘Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculating the fluctuating components are put forward.Simulation and computation results show that the rotor winding faults will cause electromagnetictorque and rotating speed to fluctuate; and fluctuating frequencies are the same and their magnitudewill increase with the rise of the severity of the faults. The load inertia affects the torque andspeed fluctuation, with the increase of inertia, the fluctuation of the torque will rise, while thecorresponding speed fluctuation will obviously decline.
文摘In order to improve the thrust-power ratio index of the linear induction motor(LIM), a novel adaptive genetic algorithm (NAGA) is proposed for the design optimization of the LIM. A good-point set theory that helps to produce a uniform initial population is used to enhance the optimization efficiency of the genetic algorithm. The crossover and mutation probabilities are improved by using the function of sigmoid and they can be adjusted nonlinearly between average fitness and maximal fitness with individual fitness. Based on the analyses of different structures between the LIM and the rotary induction motor (RIM) and referring to the analysis method of the RIM, the steady-state characteristics of the LIM that considers the end effects of the LIM is calculated and the optimal design model of the thrust-power ratio index is also presented. Through the comparison between the optimal scheme and the old scheme, the thrust-power ratio index of the LIM is obviously increased and the validity of the NAGA is proved.
文摘Diode clamped multi-level inverter (DCMLI) has a wide application prospect in high-voltage and adjustable speed drive systems due to its low stress on switching devices, low harmonic output, and simple structure. However, the problem of complexity of selecting vectors and capacitor voltage unbalance needs to be solved when the algorithm of direct torque control (DTC) is implemented on DCMLI. In this paper, a fuzzy DTC system of an induction machine fed by a three-level neutral-point-clamped (NPC) inverter is proposed. After introducing fuzzy logic, optimal selecting switching state is realized by applying various strategies which can distinguish the grade of the errors of stator flux linkage, torque, the neutral-point potential, and the position of stator flux linkage. Consequently, the neutral-point potential unbalance, the dr/dr of output voltage and the switching loss are restrained effectively, and desirable dynamic and steady-state performances of induction machines can be obtained for the DTC scheme. A design method of the fuzzy controller is introduced in detail, and the relevant simulation and experimental results have verified the feasibility of the proposed control algorithm.
文摘Brushless Doubly-Fed Machine has attracted considerable attention in recent years due to its advantages. It has the robustness of the squirrel cage induction machine, and the speed and power factor controllability of the synchronous machine as well as the absence of brushes and slip rings, and using a fractionally rated frequency converter. Hence, there are considerable benefits over the conventional machines, when the machine is applied to applications such as a wind turbine generator or high power adjustable speed drive. However, these benefits are obtained in slightly more complex structure, higher cost and larger dimensions in comparison to the conventional induction machine. This paper presents fundamental aspects of the three modes of operation of brushless doubly fed machine, i.e. simple induction mode, cascade induction mode, and synchronous mode. The investigation is performed by analyzing the spatial harmonic contents of the rotor magnetic flux density. The direct cross couplings between stator and rotor fields as well as, indirect cross coupling between stator fields by the special rotor of this machine is described. Furthermore, loss analysis of the machine in various modes is presented and the torque-speed curves for asynchronous modes are obtained. A 2-D magnetodynamic finite element model based on the D-180 4/8 pole prototype machine is extracted and simulated to verify the results.
文摘A speed-sensorless vector control system for induction machines (IMs)is presented, According to the vector control theory of IMs, the rotor flux is estimated based on a flux observer,and the speed is estimated through the method of q-axis rotor flux converging on zero with proportional integral regulator, A 0.75 kW,50 Hz,two-pole induction machine was used in the simulation and experimental verification, The simulation model was constructed in Matlab. A series of tests were performed in the field weakening region, for both no-load and loaded operation. The estimated speed tracks the actual speed well in the based speed region and field weakening region ( 1 per unit value to 4 per unit value). The small estimation error of residual speed is due to the existence of slip.
基金the National Natural Science Foundation of China under Grant 52007071 and 51907073the China Postdoctoral Science Foundation under Grant 3004131154 and 2020M672355the Applied Basic Frontier Program of Wuhan under Grant 2020010601012207。
文摘To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS.
基金supported by the Research Project of Electromagnetic Simulation Research and Development of Induction Motor of Beijing Jiaotong University (No.E18L00100)
文摘The air-gap flux density formula and thrust expression of long primary double sided linear induction machine(DLIM)in the secondary motion reference frame are deduced by using the Maxwell equations firstly.Then,by analyzing the factors that affect the thrust ripple in the thrust expression,a shuttle type secondary structure of long primary DLIMs is proposed,and its thrust performances of the machine with different shuttle size combinations are simulated and compared with that of plate secondary long primary DLIM.Comparison results show that the new secondary structure can suppress the thrust ripple and improve the stability of system acceleration.
基金This project is supported by Provincial Science & Technology Major Project of Zhejiang.
文摘The research and application of the punching machine driven by a linear induction motor(LIM)are introduced.The fundamental principle, construction, performance and application are described. Comparing this new model machine with its traditional form, the LIM driven punching machine has many great advantages, such as, simple construction, small size and mass, low production cost, short production time, easy to control, low noise and considerable energy saving.
文摘Based on the principle of direct torque control,a DTC(Direct Torque Control)system with five-phase induction motor has been studied.Providing direct control of stator flux and electromagnetic torque by optimized voltage vector,five-phase induction motor enhances flexibility of the invert states selection by increasing the number of voltage vectors,resulting in more precise control of stator flux and electromagnetic torque.The model of DTC for five-phase induction motor is constructed on equations and the method of approximate circle of torque track is used to conduct the simulation analysis of the system.The simulation results demonstrate that the DTC for five-phase induction motor control has merits of little calculation compared with vector control,simple structure,fast response and greater dynamic performance.
文摘VFT (variable frequency transformer) has been recently used as art alternative to HVDC (high voltage direct current) to control power flow between asynchronous networks. VFT consumes less reactive power than a back-to-back HVDC system, provides faster initial transient recovery, and has better natural damping capability. VFT is simply a DFIM (doubly-fed induction machine) where the machine torque controls the power flow from stator to rotor and vice versa. The main disadvantage of this VFT is the slip rings and brushes required for the rotor circuit, especially in bulk power transmission. The BDFM (brushless doubly-fed machine) with nested cage rotor machine is proved to be a comparable alternative to conventional DFIM in many applications with the advantage that all windings being in the stator frame with fixed output terminals. In this paper, the BDFM is used as a BVFT (brushless variable frequency transformer). A prototype machine is designed and simulated to verify the system validity.
文摘Faults and failures of induction machines can indeed lead to excessive costs, hence, there is a strong demand in the industry for adopting diagnosis techniques to assess and evaluate current condition of electrical machines. Eccentricity related faults as well as clutch wobbling constitute major portions of the faults related to induction motors. This paper presents the effect of clutch wobbling and mixed eccentricity on induction machine stator currents and the possibility of distinguishing between each ailment via comparing the abnormal harmonics contained in stator current spectrums in each case. In this paper, the current spectrum of a four pole-pairs, 550 kW, induction machine were calculated for the cases of full symmetry, clutch wobbling, and mixed eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents. Zooms of the current spectrums, around the 50 Hz fundamental harmonic as well as of the main slot harmonic zone, of both calculated and measured currents are included. The spectrums presented in this paper rely on calculations that are performed with dedicated software which is owned by AGH University of Science and Technology.
文摘Renewable energy production plays a major role in satisfying electricity demand.Wind power conversion is one of the most popular renewable energy sources compared to other sources.Wind energy conversion has two major types of generators such as the Permanent Magnet Synchronous Generator(PMSG)and the Doubly Fed Induction Generator(DFIG).The maximum power tracking algo-rithm is a crucial controller,a wind energy conversion system for generating maximum power in different wind speed conditions.In this article,the DFIG wind energy conversion system was developed in Matrix Laboratory(MATLAB)and designed a machine learning(ML)algorithm for the rotor and grid side converter.The ML algorithm has been developed and trained in a MATLAB environment.There are two types of learning algorithms such as supervised and unsupervised learning.In this research supervised learning is used to power the neural networks and analysis is made for various hidden layers and activation functions.Simulation results are assessed to demonstrate the efficiency of the proposed system.
基金supported by the Science and Technology Project of State Grid Hebei Electric Power Company Limited(No.kj2021-073)。
文摘The increasing penetration of renewable energy sources(RESs)brings great challenges to the frequency security of power systems.The traditional frequency-constrained unit commitment(FCUC)analyzes frequency by simplifying the average system frequency and ignoring numerous induction machines(IMs)in load,which may underestimate the risk and increase the operational cost.In this paper,we consider a multiarea frequency response(MAFR)model to capture the frequency dynamics in the unit scheduling problem,in which regional frequency security and the inertia of IM load are modeled with high-dimension differential algebraic equations.A multi-area FCUC(MFCUC)is formulated as mixed-integer nonlinear programming(MINLP)on the basis of the MAFR model.Then,we develop a multi-direction decomposition algorithm to solve the MFCUC efficiently.The original MINLP is decomposed into a master problem and subproblems.The subproblems check the nonlinear frequency dynamics and generate linear optimization cuts for the master problem to improve the frequency security in its optimal solution.Case studies on the modified IEEE 39-bus system and IEEE 118-bus system show a great reduction in operational costs.Moreover,simulation results verify the ability of the proposed MAFR model to reflect regional frequency security and the available inertia of IMs in unit scheduling.
文摘The inductances in d-q axis have an important influence on the behavior of PMSM (PM (permanent-magnet) synchronous machines). Their calculation is fundamental not only to evaluate the performance such as torque and field weakening capability but also to design the control system to maximize performance and power factor. This paper presents a study of inductance in the d-q axis for buried (i.e., IPMSM (interior) PM Synchronous Machines). This study is achieved using 2-D (two-dimensional) FEM (finite-element method) and Park's transformation.
文摘In this paper,research into torque ripple production has been undertaken for both the healthy and open-circuit faulttolerant conditions of a five-phase permanent magnet(PM)machine by using the instantaneous power(I-Power)approach.When only the fundamental component of the phase currents is applied to the phase windings,it has been shown that the 9th and 11th harmonics of the back-electromotive force(back-EMF)causes torque ripples in a five-phase PM machine and its frequency is ten times the frequency of the fundamental phase currents.When the combined fundamental and third harmonic components of the phase currents are applied to the phase windings,it has been shown that the 7th and 13th harmonic of the back-electromotive force(back-EMF)causes additional torque ripples in a five-phase PM machine.These torque ripples under fault-tolerant conditions have been analyzed analytically,as well.It has been proven that there are interactions between the fundamental component of current and the third harmonic component of the back-EMF and vice versa.These interactions cause torque ripples.A finite element analysis(FEA)model of the five-phase PM machine has been done to validate the analytical results.
基金This work was supported by the Key Research and Development Program of Jiangsu Province(BE2018107)by the Six Talent Peaks Project of Jiangsu Province(2017-KTHY-011)by the Graduate Scientific Research Innovation Project of Jiangsu Province(KYCX18_2248).
文摘Due to their excellent efficiency,power density and constant power speed region,interior permanent-magnet(IPM)machines are very suitable for electric vehicles(EVs).This paper proposed a new IPM rotor topology,which can offer high reluctance torque,wide constant power speed range and excellent overload capability.Besides,five rotor topologies with integral-slot distributed-windings IPM machines,including four existing IPM topologies and the proposed IPM topology,are designed optimally.Their characteristics,which include d-q axis inductances,saliency ratios,electromagnetic torques,corresponding torque ripples,back-electromotive forces(EMFs),overload capabilities and flux weakening performances are evaluated quantitatively.Finally,a three phase 48s8p hybrid rotor PM machine is built to verify the performances of the proposed IPM machine.This work provides some general concepts for machine developers who are willing to build IPM machines for high-performance EV applications.
基金Project supported by the LEB Research LaboratoryDepartment of Electrical Engineering,University of Batna 2, Algeria。
文摘The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.