There has been a growing interest in switched reluctance motor(SRM)ever since the development of thyristor in 1956.The most appealing feature of SRM which attracts researchers over these years is its simple structure ...There has been a growing interest in switched reluctance motor(SRM)ever since the development of thyristor in 1956.The most appealing feature of SRM which attracts researchers over these years is its simple structure that incorporates concentrated windings on the stator poles and plain laminations of ferromagnetic material as a rotor.Due to this attributes,advances are being made rapidly with the consideration that SRM can be used as an alternative to DC motors and permanent magnet motors.The objective of this paper is to present an overview of the recent developments and a prediction of possible future advancements in SR Drives.Brief history,importance,innovations in structure and control,along with practical application examples are all discussed here to give a more in-depth comprehension of the motor.展开更多
Power generation becomes the need of developed, developing and under developed countries to meet their increasing power requirements. When affordability increases their requirement of power increases, this happens whe...Power generation becomes the need of developed, developing and under developed countries to meet their increasing power requirements. When affordability increases their requirement of power increases, this happens when increased per capita consumption. The existing power scenario states that highest power is produced using firing of coals called thermal energy. A high efficiency Switched Reluctance Generator (SRG) based high frequency switching scheme to enhance the output for grid connectivity is designed, fabricated and evaluated. This proposed method generates the output for the low wind speed. It provides output at low speed because of multi-level DC-DC converter and storage system. It is an efficient solution for low wind power generation. The real time readings and results are discussed.展开更多
A novel 12 voltage vector control strategy for switched reluctance motors(SRM)with a T-type three-level converter is proposed in this study.Based on a causal analysis of torque ripple under the control of conventional...A novel 12 voltage vector control strategy for switched reluctance motors(SRM)with a T-type three-level converter is proposed in this study.Based on a causal analysis of torque ripple under the control of conventional six voltage vectors,six new voltage vectors are added for further reduction of torque ripple.An optimized control rule is adopted based on the division method of the 12 new voltage vectors.A zero-voltage vector is used to adjust the duration of the 12 voltage vectors,the time of which is varied at different parts of the vector sectors according to the torque error.In addition,the windings are connected in a delta configuration,therefore,the number of connections between the converter and SRM is reduced.Finally,the results of MATLAB/Simulink and RT-LAB are presented to verify the validity of the proposed scheme.展开更多
This paper considered the implementation of a current control method for switched reluctance motors (SRMs) and presented a novel approach to the accurate online modeling of a three phase 6/4 SRM drive. A three phase...This paper considered the implementation of a current control method for switched reluctance motors (SRMs) and presented a novel approach to the accurate online modeling of a three phase 6/4 SRM drive. A three phase 6/4 SRM is given theoretical calculation of inductance of the SRM model. The SRM was then tested in a Matlab/Simulink environment and numerically analyzed by using nonlinear 2D look-up tables created from its calculated flux linkage and static torque data. The simulation studied the hysteresis and voltage control strategies. The ideal waveform of stator current under the voltage-current condition and improved shape of rotor were proposed.展开更多
The switched reluctance motor (SRM) is applied in various industrial applications due to its profitable advantages. However, the robustness speed of SRM is one of the major drawbacks, which greatly affects the perfo...The switched reluctance motor (SRM) is applied in various industrial applications due to its profitable advantages. However, the robustness speed of SRM is one of the major drawbacks, which greatly affects the performance of motor. Thus, the aim of this paper is to control the speed of SRM using H-infinity control strategy. This H-infinity control technique is stronger against robustness. In the proposed speed controller, the rotor position of the SRM is applied to the controller. The speed variation of the rotor is determined from the reference speed and applied to the controller as input. Then, the speed variation and the corresponding sensitivity function are determined. The sensitivity function determination is based on the input weight of the controller. The weight adjustment process is repeated until a stable speed condition is achieved. Then, the output of the proposed control technique is compared with the existing control technique and the robustness is analyzed. Here, the existing control techniques considered are proportional- integral (PI) controller and fuzzy logic controller (FLC)- based PI gain tuning. The proposed control strategy is simulated in MATLAB working platform and the control performance is analyzed.展开更多
开关磁阻电机(Switched reluctance motor,SRM)因结构简单坚固、起动转矩大和转速范围宽的特点,在电动车驱动系统有着广阔的应用前景。不同于异步电机和同步电机依靠调节器双极性输出量实现四象限工作,传统单极性SRM转速环控制系统需要...开关磁阻电机(Switched reluctance motor,SRM)因结构简单坚固、起动转矩大和转速范围宽的特点,在电动车驱动系统有着广阔的应用前景。不同于异步电机和同步电机依靠调节器双极性输出量实现四象限工作,传统单极性SRM转速环控制系统需要依靠外部给定来切换工作象限,在四象限运行工况下存在切换过程平滑性难以控制的问题。针对此,本文提出一种将SRM转速环控制系统及其四象限控制方法相结合,以传统的角度位置控制(Angle position control,APC)理论为基础,将转速调节器双极性输出量与电机转速方向进行逻辑判断形成新的APC控制参数,配合传统电流斩波控制(Chopping current control,CCC)形成新型的四象限转速环控制系统。该系统优化了SRM频繁电制动切换的顿挫问题,为电动车坡道动态行驶安全提供了平滑切换的保障。仿真和实验结果均验证了该系统原理的可行性,较好地实现了电动车SRM驱动系统的四象限工况切换。展开更多
基金This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2018R1D1A1B07043735)。
文摘There has been a growing interest in switched reluctance motor(SRM)ever since the development of thyristor in 1956.The most appealing feature of SRM which attracts researchers over these years is its simple structure that incorporates concentrated windings on the stator poles and plain laminations of ferromagnetic material as a rotor.Due to this attributes,advances are being made rapidly with the consideration that SRM can be used as an alternative to DC motors and permanent magnet motors.The objective of this paper is to present an overview of the recent developments and a prediction of possible future advancements in SR Drives.Brief history,importance,innovations in structure and control,along with practical application examples are all discussed here to give a more in-depth comprehension of the motor.
文摘Power generation becomes the need of developed, developing and under developed countries to meet their increasing power requirements. When affordability increases their requirement of power increases, this happens when increased per capita consumption. The existing power scenario states that highest power is produced using firing of coals called thermal energy. A high efficiency Switched Reluctance Generator (SRG) based high frequency switching scheme to enhance the output for grid connectivity is designed, fabricated and evaluated. This proposed method generates the output for the low wind speed. It provides output at low speed because of multi-level DC-DC converter and storage system. It is an efficient solution for low wind power generation. The real time readings and results are discussed.
基金Supported by the National Natural Science Foundation of China(51977054).
文摘A novel 12 voltage vector control strategy for switched reluctance motors(SRM)with a T-type three-level converter is proposed in this study.Based on a causal analysis of torque ripple under the control of conventional six voltage vectors,six new voltage vectors are added for further reduction of torque ripple.An optimized control rule is adopted based on the division method of the 12 new voltage vectors.A zero-voltage vector is used to adjust the duration of the 12 voltage vectors,the time of which is varied at different parts of the vector sectors according to the torque error.In addition,the windings are connected in a delta configuration,therefore,the number of connections between the converter and SRM is reduced.Finally,the results of MATLAB/Simulink and RT-LAB are presented to verify the validity of the proposed scheme.
文摘This paper considered the implementation of a current control method for switched reluctance motors (SRMs) and presented a novel approach to the accurate online modeling of a three phase 6/4 SRM drive. A three phase 6/4 SRM is given theoretical calculation of inductance of the SRM model. The SRM was then tested in a Matlab/Simulink environment and numerically analyzed by using nonlinear 2D look-up tables created from its calculated flux linkage and static torque data. The simulation studied the hysteresis and voltage control strategies. The ideal waveform of stator current under the voltage-current condition and improved shape of rotor were proposed.
文摘The switched reluctance motor (SRM) is applied in various industrial applications due to its profitable advantages. However, the robustness speed of SRM is one of the major drawbacks, which greatly affects the performance of motor. Thus, the aim of this paper is to control the speed of SRM using H-infinity control strategy. This H-infinity control technique is stronger against robustness. In the proposed speed controller, the rotor position of the SRM is applied to the controller. The speed variation of the rotor is determined from the reference speed and applied to the controller as input. Then, the speed variation and the corresponding sensitivity function are determined. The sensitivity function determination is based on the input weight of the controller. The weight adjustment process is repeated until a stable speed condition is achieved. Then, the output of the proposed control technique is compared with the existing control technique and the robustness is analyzed. Here, the existing control techniques considered are proportional- integral (PI) controller and fuzzy logic controller (FLC)- based PI gain tuning. The proposed control strategy is simulated in MATLAB working platform and the control performance is analyzed.
文摘开关磁阻电机(Switched reluctance motor,SRM)因结构简单坚固、起动转矩大和转速范围宽的特点,在电动车驱动系统有着广阔的应用前景。不同于异步电机和同步电机依靠调节器双极性输出量实现四象限工作,传统单极性SRM转速环控制系统需要依靠外部给定来切换工作象限,在四象限运行工况下存在切换过程平滑性难以控制的问题。针对此,本文提出一种将SRM转速环控制系统及其四象限控制方法相结合,以传统的角度位置控制(Angle position control,APC)理论为基础,将转速调节器双极性输出量与电机转速方向进行逻辑判断形成新的APC控制参数,配合传统电流斩波控制(Chopping current control,CCC)形成新型的四象限转速环控制系统。该系统优化了SRM频繁电制动切换的顿挫问题,为电动车坡道动态行驶安全提供了平滑切换的保障。仿真和实验结果均验证了该系统原理的可行性,较好地实现了电动车SRM驱动系统的四象限工况切换。