Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hi...Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine.展开更多
Maize plant architecture influences planting density and,in turn,grain yield.Most of the plant architecture-related traits can be described as organ size.We describe a miniature maize mutant,Tiny plant 4(Tip4),which e...Maize plant architecture influences planting density and,in turn,grain yield.Most of the plant architecture-related traits can be described as organ size.We describe a miniature maize mutant,Tiny plant 4(Tip4),which exhibits reduced size of multiple organs and exhibits a semi-dominant monofactorial inheritance characteristic.Positional cloning confirmed that a 4-bp deletion in the NAC TF with transmembrane motif 1-Like(NTL)gene ZmNTL2,denoted as ZmNTL2^(Δ),confers the Tip4 mutation.qRT-PCR showed that ZmNTL2 was expressed in all tested tissues.ZmNTL2 functions as a transcriptional activator and is located in both the nucleus and biomembranes.The mutation does not affect the mRNA abundance of ZmNTL2 locus,but it does result in the loss of transmembrane domain and confines the ZmNTL2^(Δ)protein to the nucleus.Knocking out ZmNTL2 has no effect on maize organ size development,indicating that the 4-bp deletion might be a gain-of-function mutation in organ size regulation.Combining transcriptome sequencing with cytokinin and auxin content determination suggests that the decreased organ size may be possibly mediated by changes in hormone homeostasis.展开更多
Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate cl...Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.展开更多
The floral organ morphology,pollen morphology,quantity,and viability of Rumex,Rumex hanus F1,Rumex hanus 1,and Rumex hanus 2 were compared and analyzed.The results showed that the longitudinal diameter of petals was n...The floral organ morphology,pollen morphology,quantity,and viability of Rumex,Rumex hanus F1,Rumex hanus 1,and Rumex hanus 2 were compared and analyzed.The results showed that the longitudinal diameter of petals was not significantly different among different varieties of sorrel,and the transverse diameter and corolla diameter showed differences to varying degrees.They all had six stamens and three stigmas.The pollen shape of the four varieties was prolate,and the polar view was trilobated and round.They all had three germinal furrows,and the outer wall of the pollen was decorated with small cavities and spiny patterns,with warty protrusions.The equatorial axis length of pollen of different varieties of sorrel was significantly different(P<0.05).There were no significant differences in pollen amount among different varieties.There were six anthers in a single flower,featuring anther dehiscence.The pollen viability of Rumex hanus 1 was significantly lower than that of the other three varieties(P<0.05).Therefore,through the analysis of the floral organs and morphological characteristics of anthers of sorrel,the varieties of sorrel can be effectively distinguished and identified.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzhei...Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.展开更多
[Objective] This study was conducted to investigate the morphological and physiological differences between the flowers opening spring and late autumn of Hosui Asian pear(Pyrus pyrifolia Nakai). [Method] Pear flower...[Objective] This study was conducted to investigate the morphological and physiological differences between the flowers opening spring and late autumn of Hosui Asian pear(Pyrus pyrifolia Nakai). [Method] Pear flowers were collected from normal bloom(NB) and returning bloom periods during late autumn in 2011-2013,respectively. The morphological and physiological indices including pollen number,germination rate, petal length, soluble protein content, soluble sugar content, amino acid content, pollen tube growth, fruiting characteristics of NB and RB flowers were detected and compared. [Result] The filament length and petal area of RB flowers were significantly smaller than those of NB flowers. The contents of soluble proteins, soluble sugars and amino acids of RB pollens were significantly smaller than those of NB flowers. In addition, the abortion rate of RB flowers was higher than that of NB flowers. [Conclusion] RB flowers had complete floral organs and were capable of pollination, but they were different from NB flowers in some morphological and physiological indices.展开更多
Anomozamites haifanggouensis (Kimura et al.) Zheng et Zhang comb. nov. is a characteristic Bennettitalean plant in Middle Jurassic flora. Only one specimen was collected from Haifanggou Formation (Middle Jurassic) in ...Anomozamites haifanggouensis (Kimura et al.) Zheng et Zhang comb. nov. is a characteristic Bennettitalean plant in Middle Jurassic flora. Only one specimen was collected from Haifanggou Formation (Middle Jurassic) in Daohugou village, Shantou town, Ningcheng County, Nei Mongol Autonomous Region, China. The stem of plant is slender and repeatedly branches as a dichasial system with a fertile shoot in the fork, forming equal and widely divergent branches, on the branches born with the fronds of Anomozamites type. Its reproductive organs consists of some microsporophylls and a few of the bracteoid small leaves (or receptacular leaves). Some scattered bracteoid leaves and microsporophylls were formerly considered by Pan as dicots. Since then, they were proposed to be a non-committal genus Pankuangia and described them as P. haifanggouensis by Kimura et al. In this study, we discover that these bracteoid small leaves and microsporophylls should be of Anomozamites. This discovery provides strong evidence for the 'Pankuangia' determination of the taxonomical position.展开更多
Various individual organs (tepal, flower bud, inflorescence branch, inflorescence, adult vegetative bud and juvenile vegetative bud) were directly regenerated respectively by callus in Dracaena fragrans cv. massangean...Various individual organs (tepal, flower bud, inflorescence branch, inflorescence, adult vegetative bud and juvenile vegetative bud) were directly regenerated respectively by callus in Dracaena fragrans cv. massangeana Hort. During the regeneration of these individual organs some regularity phenomena were observed. Firstly, the kind range of the individual organs, which are directly regenerated in vitro, is in close relationship to the differentiated stages of the organs used for explant excision during plant ontogeny. The explants excised from the epigeous organ that is differentiated at some stage (stage A) during plant ontogeny must be able to separately regenerate all of those individual epigeous organs: ones differentiated slightly later than the stage A, ones differentiated at the stage A and all ones differentiated earlier than the stage A. Secondly, within this range which kind of organ is regenerated depends on the exogenous auxin concentrations in medium. With the gradual increase of 2,4-D concentration from 0.005 mg/L to 0.5 mg/L, the kinds of regenerated organs will change by the order as follows: vegetative bud, inflorescence, inflorescence branch, flower bud, tepal. These regularities will be able to be used for inducing the direct regeneration of a given epigeous organ in angiosperms.展开更多
In this paper, ontogeny of immune-related organs during theearly development of carp was studied by histochemical technique-lcineBlue staining under acid conditions and PAS reaction(AB-PAS staining). Thekidney appeare...In this paper, ontogeny of immune-related organs during theearly development of carp was studied by histochemical technique-lcineBlue staining under acid conditions and PAS reaction(AB-PAS staining). Thekidney appeared one day before hatching, spleen, liver and pancreas emergedon the same day of hatching, and thymus was not found until the third day afterhatching. Ontogeny of these immune related organs of the carp in thisresearch is earlier than that reported by Botham.展开更多
[Objective] To examine the effect of endophytic fungi ALl2 (Gilmaniella sp.) on metabolites distribution in organs of Atractylodes lancea. [Method] Endophytic fungi ALl2 was inoculated on Atraetylodes lancea plantle...[Objective] To examine the effect of endophytic fungi ALl2 (Gilmaniella sp.) on metabolites distribution in organs of Atractylodes lancea. [Method] Endophytic fungi ALl2 was inoculated on Atraetylodes lancea plantlets in tissue culture, and the distribution of cellulose, hemicellulose, lignin, soluble sugar in leaves and roots of the inoculated group were detected. The weight of leaves and roots were compared. Gas Chromatography was used to analyze the volatile oil components. [Result] Compared with the control group, the average fresh weight and dry weight of leaves and roots of A. lancea which had been symbiosed with ALl2 increased significantly. The content of lignin and soluble sugar increased in the leaves of the inoculated group, and the content of cellulose, hemicellulose, lignin, soluble sugar and volatile oil also increased in roots. [Conclusion] The results indicate that symbiosed with ALl2 is benefit for the development of A. lancea roots and can promote the transfer and accumulation of the medicinal components to the roots.展开更多
Under the environment of an artificial climate chamber, supercooling point (SCP) and freezing point (FP) in flower and young fruit at different development stages and freezing injuries of floral organs were studie...Under the environment of an artificial climate chamber, supercooling point (SCP) and freezing point (FP) in flower and young fruit at different development stages and freezing injuries of floral organs were studied. The apricot cultivars tested were Kety, Golden Sun and Honghebao. With the development of flower buds, SCP and FP increased, which indicated that their cold resistance decreased. SCP and FP varied with different floral organs. For different apricot cultivars, it was found that, the lower SCP or FP in floral organs was, the more resistant capacity the cultivar had, and the larger the temperature interval from SCP to FP was. SCP was not a constant value, but a range. Frequency distribution of SCP in petals was more dispersing than that in stamens and pistils. Floral organs could maintain a supercooling state to avoid ice formation, but they were sensitive to freezing. Once floral organs froze, thev turned brown after thawing.展开更多
Aim: To observe the cytotoxic effect of the organophosphate insecticide malathion in the reproductive tissues of the earthworms, Eisenia foetida. Methods: Worms were nourished in soil treated with malathion at single ...Aim: To observe the cytotoxic effect of the organophosphate insecticide malathion in the reproductive tissues of the earthworms, Eisenia foetida. Methods: Worms were nourished in soil treated with malathion at single sub-lethal doses of 0, 80, 150, 300 and 600 mg-kg^(-1) soil. (LD_(50) = 880 mg kg^(-1) soil) and evaluated on days 1, 5, 15 and 30 after exposure. The body weights were recorded and male reproductive organs evaluated. Results: Malathion-treated animals showed a significant reduction in body weight in a dose-dependent manner. Malathion treatment modified the disposition of spermatozoa in the basal epithelium of the spermatheca. The Br-deoxyuridine test showed a significant rise in cells in phase S on days 5 and 15. Also, a higher percentage of spermatogonia with fragmented DNA were observed by means of the TdT-mediated dUTP nick-end labeling (TUNEL) technique in the spermatheca of treated animals. Conclusion: Treatment with malathion decreased the body weight and the spermatic viability in spermatheca, altering the cell proliferation and modifying the DNA structure of spermatogonia.展开更多
The competition-density (C-D) effects for mean mass for tree, stem, branch and leaf were analyzed in Acacia auriculiformis stands. Mean tree mass-density and mean organ mass-density were well explained by the C-D equa...The competition-density (C-D) effects for mean mass for tree, stem, branch and leaf were analyzed in Acacia auriculiformis stands. Mean tree mass-density and mean organ mass-density were well explained by the C-D equation of tree and the C-D equation of tree organ, respectively. An equation describing the relationship between mean leaf area u and density was formulated that fit the u-data well. The relationship between mean tree mass w and the ratio of each organ to mean tree mass (wo/ w) was examined. With increasing w, the stem mass ratio wS/w increased, whereas the branch mass ratio wB/w and the leaf mass ratio wL/w decreased. The yield difference between the lowest-density stand and the high-density stand became greater with stand growth. However, the yield of the mid-density stand was slightly lower than the yield of the high-density stand during the experimental period. To produce the most desirable combination of demanding individual-tree size and relative high stem yield, the mid-density is recommended as proper planting density for future management of A. auriculiformis stands.展开更多
Based on the experiment of measuring panicles and leaves, air temperature, and humidity above the canopy of rice cultivars after heading in 2005 and 2006, we investigated the temperature difference (TD) between the ...Based on the experiment of measuring panicles and leaves, air temperature, and humidity above the canopy of rice cultivars after heading in 2005 and 2006, we investigated the temperature difference (TD) between the air and organs of rice plant and its relationship with spikelet fertility. The results showed that TDs between the air and organs of rice varied with air temperature, air humidity, and plant type. For similar air humidity, TDs were lower at the air temperature of 28.5℃ than at higher temperature of 35.5℃, whereas for the same air temperature, the TDs decreased as the air humidity increased. TDs were also affected by plant type of the cultivars. Erect panicle cultivars showed higher TDs than those with droopy panicles under similar climatic conditions, and cultivars with panicles above flag leaf (PAFL) had higher TDs than those with panicles below the flag leaf (PBFL). Cultivars grown in a location with lower air humidity and higher temperature, such as Taoyuan, China, had higher spikelet fertility than those in higher humidity under the similar air temperature during the grain filling stage. This is partially attributed to the larger TDs under the lower humidity. Rowspacing and the ratio of basal-tillering to panicle-spikelet fertilizer showed a significant influence on TD and subsequently on spikelet fertility, suggesting the possibility of increasing spikelet fertility by agronomic management.展开更多
BACKGROUND:Severe acute pancreatitis (SAP) is characterized by fatal pathogenic conditions and a high mortality.It is important to study SAP complicated with multiple organ injury.In this study we compared the protect...BACKGROUND:Severe acute pancreatitis (SAP) is characterized by fatal pathogenic conditions and a high mortality.It is important to study SAP complicated with multiple organ injury.In this study we compared the protective effects of three traditional Chinese medicines (Ligustrazine,Kakonein and Panax Notoginsenoside) on the small intestine and immune organs (thymus,spleen and lymph nodes) of rats with SAP and explored their mechanism of action.METHODS:One hundred forty-four rats with SAP were randomly divided into model control,Ligustrazine-treated,Kakonein-treated,and Panax Notoginsenoside-treated groups (n=36 per group).Another 36 normal rats comprised the sham-operated group.According to the different time points after operation,the experimental rats in each group were subdivided into 3-,6-and 12-hour subgroups (n=12).At various time points after operation,the mortality rate of rats and pathological changes in the small intestine and immune organs were recorded and the serum amylase levels were measured.RESULTS:Compared to the model control groups,the mortality rates in all treated groups declined and the pathological changes in the small intestine and immune tissues were relieved to different degrees.The serum amylase levels in the three treated groups were significantly lower than those in the model control group at 12 hours.The pathological severity scores for the small intestinal mucosa,thymus and spleen (at 3 and 12 hours) in the Ligustrazine-treated group,for the thymus (at 3 and 12 hours) and spleen (at 3 and 6 hours) in the Kakonein-treated group,and for the thymus (at 3 hours)and spleen (at 3 hours) in the Panax Notoginsenoside-treated group were significantly lower than those in the model control group.The pathological severity scores of the small intestinal mucosa (at 6 and 12 hours) and thymus (at 6 hours) in the Ligustrazine-treated group were significantly lower than those in the Kakonein-and Panax Notoginsenoside-treated groups.CONCLUSIONS:All the three traditional Chinese drugs significantly alleviated the pathological changes in the small intestine and immune organs of SAP rats.Ligustrazine was the most effective one among them.展开更多
There is a critical shortage of organs, cells, and corneas from deceased human donors worldwide. There are also shortages of human blood for transfusion. A potential solution to all of these problems is the transplant...There is a critical shortage of organs, cells, and corneas from deceased human donors worldwide. There are also shortages of human blood for transfusion. A potential solution to all of these problems is the transplantation of organs, cells, and corneas from a readily available animal species, such as the pig, and the transfusion of red blood cells from pigs into humans. However, to achieve these ends, major immunologic and other barriers have to be overcome. Considerable progress has been made in this respect by the genetic modification of pigs to protect their tissues from the primate immune response and to correct several molecular incompatibilities that exist between pig and primate. These have included knockout of genes responsible for the expression of major antigenic targets for primate natural anti-pig antibodies, insertion of human complement- and coagulation-regulatory transgenes, and knockdown of swine leukocyte antigens that stimulate the primate's adaptive immune response. As a result of these manipulations, the administration of novel immunosuppressive agents, and other innovations, pig hearts have now functioned in baboons for 6-8 months, pig islets have maintained normoglycemia in diabetic monkeys for 〉 1 year, and pig corneas have maintained transparency for several months. Clinical trials of pig islet trans- plantation are already in progress. Future developments will involve further genetic manipulations of the organ- source pig, with most of the genes that are likely to be beneficial already identified.展开更多
Radiation for targeting liver tumors can be challenging because of the damage that it can cause to sensitive organs such as heart and kidney.To calculate the dose received by noninvolved organs,a modeling of the pati...Radiation for targeting liver tumors can be challenging because of the damage that it can cause to sensitive organs such as heart and kidney.To calculate the dose received by noninvolved organs,a modeling of the patient’s entire body is necessary.Therefore,in this study,a human Oak Ridge National Laboratory-Medical Internal Radiation Dose phantom was used for liver proton therapy simulation.The results show that the optimum proton energy interval covering the whole tumor was in the range of 90-120 MeV.A spread-out Bragg peak was built by adding Bragg peaks to cover the liver tumor volume,and beam parameters recommended by the International Commission on Radiation Units and Measurements(ICRU) were evaluated.The flux of secondary particles was calculated on the surface of the tumor,and two-dimensional dose distributions for protons,neutrons and photons were shown.Finally,the total doses of protons,photons and neutrons in tumor and 14 noninvolved organs were calculated.The results indicated that the ratio of received dose to the normal tissue of the liver concerning the spherical tumor of 2 cm in radius was approximately0.01.This ratio for organs such as gall bladder,heart and kidney was approximately 8.4×10-5,5.1×10-5 and2.34×10-5.Secondary particles such as neutrons andphotons deposit their energies to organs located far from the treatment volume,thus increasing the risk of secondary cancers.The research results indicated that the secondary particles dose was quite small in liver proton therapy.All the calculations were performed using Monte Carlo N-Particle Transport Code (MCNP).展开更多
Water deficit is one of the most important causes of decreased yield in cultivated plants. Non-foliar green organs in cotton play an important role in yield formation at the late growth stage. Although better photosyn...Water deficit is one of the most important causes of decreased yield in cultivated plants. Non-foliar green organs in cotton play an important role in yield formation at the late growth stage. Although better photosynthetic performance was observed in a non-foliar organ (bract) compared with leaves under water deficit. However, the physiological response of each organ in cotton to water deficit has not been comprehensively studied in relation to the water status and photosynthesis characteristics. We studied the maintenance of water status of each organ in cotton by measuring their relative water content, proline content and stomatal characteristics. Water deficit significantly decreased the surface area of each organ, but to a lesser extent in non-foliar organs. Our results showed that the relative contribution of biomass accumulation of non-foliar organs increased under water deficit. Non-foliar organs (bracts and capsule wall) showed less ontogenetic decrease in O2 evolution capacity and in RuBPC activity (per dry weight) as well as better antioxidant systems than leaves at various days after anthesis. We conclude that the photosynthesis from non-foliar organs is important for increasing cotton yield especially under water deficit conditions.展开更多
The anatomical structures of roots, stems and leaves are very important indicators to'evaluate drought resistance. The paper reports the relationship between anatomical structures of vegetative organs and drought res...The anatomical structures of roots, stems and leaves are very important indicators to'evaluate drought resistance. The paper reports the relationship between anatomical structures of vegetative organs and drought resistance in forages.展开更多
基金supported by the Key Projects of the National Natural Science Foundation of China,No.11932013(to XC)Key Military Logistics Research Projects,No.B WJ21J002(to XC)+4 种基金the Key projects of the Special Zone for National Defence Innovation,No.21-163-12-ZT006002-13(to XC)the National Nature Science Foundation of China No.82272255(to XC)the National Defense Science and Technology Outstanding Youth Science Fund Program,No.2021-JCIQ-ZQ-035(to XC)the Scientific Research Innovation Team Project of Armed Police Characteristic Medical Center,No.KYCXTD0104(to ZL)the National Natural Science Foundation of China Youth Fund,No.82004467(to BC)。
文摘Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine.
基金supported by The National Key Research and Development Program of China(2022YFD1200704--3)Crop Varietal Improvement and Insect Pests Control by Nuclear Radiation,Platform for Mutation Breeding by Radiation of Sichuan(2021YFYZ0011)+1 种基金Natural Science Foundation of Sichuan Province(2022NSFSC1635)Applied Basic Research Programs of Sichuan Provincial Science and Technology Department(2020YJ0249)。
文摘Maize plant architecture influences planting density and,in turn,grain yield.Most of the plant architecture-related traits can be described as organ size.We describe a miniature maize mutant,Tiny plant 4(Tip4),which exhibits reduced size of multiple organs and exhibits a semi-dominant monofactorial inheritance characteristic.Positional cloning confirmed that a 4-bp deletion in the NAC TF with transmembrane motif 1-Like(NTL)gene ZmNTL2,denoted as ZmNTL2^(Δ),confers the Tip4 mutation.qRT-PCR showed that ZmNTL2 was expressed in all tested tissues.ZmNTL2 functions as a transcriptional activator and is located in both the nucleus and biomembranes.The mutation does not affect the mRNA abundance of ZmNTL2 locus,but it does result in the loss of transmembrane domain and confines the ZmNTL2^(Δ)protein to the nucleus.Knocking out ZmNTL2 has no effect on maize organ size development,indicating that the 4-bp deletion might be a gain-of-function mutation in organ size regulation.Combining transcriptome sequencing with cytokinin and auxin content determination suggests that the decreased organ size may be possibly mediated by changes in hormone homeostasis.
基金the National Natural Science Foundation of China(32260379&32371852)the Jiangxi Provincial Natural Science Foundation(20224ACB215005)
文摘Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.
基金Supported by National Key Research and Development Plan Project of China(2023YFD1301200)。
文摘The floral organ morphology,pollen morphology,quantity,and viability of Rumex,Rumex hanus F1,Rumex hanus 1,and Rumex hanus 2 were compared and analyzed.The results showed that the longitudinal diameter of petals was not significantly different among different varieties of sorrel,and the transverse diameter and corolla diameter showed differences to varying degrees.They all had six stamens and three stigmas.The pollen shape of the four varieties was prolate,and the polar view was trilobated and round.They all had three germinal furrows,and the outer wall of the pollen was decorated with small cavities and spiny patterns,with warty protrusions.The equatorial axis length of pollen of different varieties of sorrel was significantly different(P<0.05).There were no significant differences in pollen amount among different varieties.There were six anthers in a single flower,featuring anther dehiscence.The pollen viability of Rumex hanus 1 was significantly lower than that of the other three varieties(P<0.05).Therefore,through the analysis of the floral organs and morphological characteristics of anthers of sorrel,the varieties of sorrel can be effectively distinguished and identified.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金financially supported by the National Natural Science Foundation of China,No.823 74552 (to WP)the Science and Technology Innovation Program of Hunan Province,No.2022RC1220 (to WP)+1 种基金the Natural Science Foundation of Hunan Province of China,Nos.2020JJ4803 (to WP),2022JJ40723 (to MY)the Scientific Research Launch Project for New Employees of the Second Xiangya Hospital of Central South University (to MY)
文摘Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.
基金Supported by Sichuan Provincial Program on Basic Research Project(15JC0096)~~
文摘[Objective] This study was conducted to investigate the morphological and physiological differences between the flowers opening spring and late autumn of Hosui Asian pear(Pyrus pyrifolia Nakai). [Method] Pear flowers were collected from normal bloom(NB) and returning bloom periods during late autumn in 2011-2013,respectively. The morphological and physiological indices including pollen number,germination rate, petal length, soluble protein content, soluble sugar content, amino acid content, pollen tube growth, fruiting characteristics of NB and RB flowers were detected and compared. [Result] The filament length and petal area of RB flowers were significantly smaller than those of NB flowers. The contents of soluble proteins, soluble sugars and amino acids of RB pollens were significantly smaller than those of NB flowers. In addition, the abortion rate of RB flowers was higher than that of NB flowers. [Conclusion] RB flowers had complete floral organs and were capable of pollination, but they were different from NB flowers in some morphological and physiological indices.
文摘Anomozamites haifanggouensis (Kimura et al.) Zheng et Zhang comb. nov. is a characteristic Bennettitalean plant in Middle Jurassic flora. Only one specimen was collected from Haifanggou Formation (Middle Jurassic) in Daohugou village, Shantou town, Ningcheng County, Nei Mongol Autonomous Region, China. The stem of plant is slender and repeatedly branches as a dichasial system with a fertile shoot in the fork, forming equal and widely divergent branches, on the branches born with the fronds of Anomozamites type. Its reproductive organs consists of some microsporophylls and a few of the bracteoid small leaves (or receptacular leaves). Some scattered bracteoid leaves and microsporophylls were formerly considered by Pan as dicots. Since then, they were proposed to be a non-committal genus Pankuangia and described them as P. haifanggouensis by Kimura et al. In this study, we discover that these bracteoid small leaves and microsporophylls should be of Anomozamites. This discovery provides strong evidence for the 'Pankuangia' determination of the taxonomical position.
文摘Various individual organs (tepal, flower bud, inflorescence branch, inflorescence, adult vegetative bud and juvenile vegetative bud) were directly regenerated respectively by callus in Dracaena fragrans cv. massangeana Hort. During the regeneration of these individual organs some regularity phenomena were observed. Firstly, the kind range of the individual organs, which are directly regenerated in vitro, is in close relationship to the differentiated stages of the organs used for explant excision during plant ontogeny. The explants excised from the epigeous organ that is differentiated at some stage (stage A) during plant ontogeny must be able to separately regenerate all of those individual epigeous organs: ones differentiated slightly later than the stage A, ones differentiated at the stage A and all ones differentiated earlier than the stage A. Secondly, within this range which kind of organ is regenerated depends on the exogenous auxin concentrations in medium. With the gradual increase of 2,4-D concentration from 0.005 mg/L to 0.5 mg/L, the kinds of regenerated organs will change by the order as follows: vegetative bud, inflorescence, inflorescence branch, flower bud, tepal. These regularities will be able to be used for inducing the direct regeneration of a given epigeous organ in angiosperms.
文摘In this paper, ontogeny of immune-related organs during theearly development of carp was studied by histochemical technique-lcineBlue staining under acid conditions and PAS reaction(AB-PAS staining). Thekidney appeared one day before hatching, spleen, liver and pancreas emergedon the same day of hatching, and thymus was not found until the third day afterhatching. Ontogeny of these immune related organs of the carp in thisresearch is earlier than that reported by Botham.
基金Supported by the National Natural Science Foundation of China(31070443,30970523)the National Science Foundation for Talents Training in Basic Science,China(J1103507)the Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions,China~~
文摘[Objective] To examine the effect of endophytic fungi ALl2 (Gilmaniella sp.) on metabolites distribution in organs of Atractylodes lancea. [Method] Endophytic fungi ALl2 was inoculated on Atraetylodes lancea plantlets in tissue culture, and the distribution of cellulose, hemicellulose, lignin, soluble sugar in leaves and roots of the inoculated group were detected. The weight of leaves and roots were compared. Gas Chromatography was used to analyze the volatile oil components. [Result] Compared with the control group, the average fresh weight and dry weight of leaves and roots of A. lancea which had been symbiosed with ALl2 increased significantly. The content of lignin and soluble sugar increased in the leaves of the inoculated group, and the content of cellulose, hemicellulose, lignin, soluble sugar and volatile oil also increased in roots. [Conclusion] The results indicate that symbiosed with ALl2 is benefit for the development of A. lancea roots and can promote the transfer and accumulation of the medicinal components to the roots.
文摘Under the environment of an artificial climate chamber, supercooling point (SCP) and freezing point (FP) in flower and young fruit at different development stages and freezing injuries of floral organs were studied. The apricot cultivars tested were Kety, Golden Sun and Honghebao. With the development of flower buds, SCP and FP increased, which indicated that their cold resistance decreased. SCP and FP varied with different floral organs. For different apricot cultivars, it was found that, the lower SCP or FP in floral organs was, the more resistant capacity the cultivar had, and the larger the temperature interval from SCP to FP was. SCP was not a constant value, but a range. Frequency distribution of SCP in petals was more dispersing than that in stamens and pistils. Floral organs could maintain a supercooling state to avoid ice formation, but they were sensitive to freezing. Once floral organs froze, thev turned brown after thawing.
文摘Aim: To observe the cytotoxic effect of the organophosphate insecticide malathion in the reproductive tissues of the earthworms, Eisenia foetida. Methods: Worms were nourished in soil treated with malathion at single sub-lethal doses of 0, 80, 150, 300 and 600 mg-kg^(-1) soil. (LD_(50) = 880 mg kg^(-1) soil) and evaluated on days 1, 5, 15 and 30 after exposure. The body weights were recorded and male reproductive organs evaluated. Results: Malathion-treated animals showed a significant reduction in body weight in a dose-dependent manner. Malathion treatment modified the disposition of spermatozoa in the basal epithelium of the spermatheca. The Br-deoxyuridine test showed a significant rise in cells in phase S on days 5 and 15. Also, a higher percentage of spermatogonia with fragmented DNA were observed by means of the TdT-mediated dUTP nick-end labeling (TUNEL) technique in the spermatheca of treated animals. Conclusion: Treatment with malathion decreased the body weight and the spermatic viability in spermatheca, altering the cell proliferation and modifying the DNA structure of spermatogonia.
基金supported by the Forestry Technology Popularization Demonstration Project of the Central Government of China(No.[2015]GDTK-07)
文摘The competition-density (C-D) effects for mean mass for tree, stem, branch and leaf were analyzed in Acacia auriculiformis stands. Mean tree mass-density and mean organ mass-density were well explained by the C-D equation of tree and the C-D equation of tree organ, respectively. An equation describing the relationship between mean leaf area u and density was formulated that fit the u-data well. The relationship between mean tree mass w and the ratio of each organ to mean tree mass (wo/ w) was examined. With increasing w, the stem mass ratio wS/w increased, whereas the branch mass ratio wB/w and the leaf mass ratio wL/w decreased. The yield difference between the lowest-density stand and the high-density stand became greater with stand growth. However, the yield of the mid-density stand was slightly lower than the yield of the high-density stand during the experimental period. To produce the most desirable combination of demanding individual-tree size and relative high stem yield, the mid-density is recommended as proper planting density for future management of A. auriculiformis stands.
基金supported by the National Natural Science Foundation of China(NSFC30471016)National Ample Commissariat Program of Technology,China(2004BA520A03,BE2004387).
文摘Based on the experiment of measuring panicles and leaves, air temperature, and humidity above the canopy of rice cultivars after heading in 2005 and 2006, we investigated the temperature difference (TD) between the air and organs of rice plant and its relationship with spikelet fertility. The results showed that TDs between the air and organs of rice varied with air temperature, air humidity, and plant type. For similar air humidity, TDs were lower at the air temperature of 28.5℃ than at higher temperature of 35.5℃, whereas for the same air temperature, the TDs decreased as the air humidity increased. TDs were also affected by plant type of the cultivars. Erect panicle cultivars showed higher TDs than those with droopy panicles under similar climatic conditions, and cultivars with panicles above flag leaf (PAFL) had higher TDs than those with panicles below the flag leaf (PBFL). Cultivars grown in a location with lower air humidity and higher temperature, such as Taoyuan, China, had higher spikelet fertility than those in higher humidity under the similar air temperature during the grain filling stage. This is partially attributed to the larger TDs under the lower humidity. Rowspacing and the ratio of basal-tillering to panicle-spikelet fertilizer showed a significant influence on TD and subsequently on spikelet fertility, suggesting the possibility of increasing spikelet fertility by agronomic management.
基金supported by grants from the Technological Foundation Project of Traditional Chinese Medicine Science of Zhejiang Province (2003C130) Zhejiang First Level 151Talent Foundation (2010382)
文摘BACKGROUND:Severe acute pancreatitis (SAP) is characterized by fatal pathogenic conditions and a high mortality.It is important to study SAP complicated with multiple organ injury.In this study we compared the protective effects of three traditional Chinese medicines (Ligustrazine,Kakonein and Panax Notoginsenoside) on the small intestine and immune organs (thymus,spleen and lymph nodes) of rats with SAP and explored their mechanism of action.METHODS:One hundred forty-four rats with SAP were randomly divided into model control,Ligustrazine-treated,Kakonein-treated,and Panax Notoginsenoside-treated groups (n=36 per group).Another 36 normal rats comprised the sham-operated group.According to the different time points after operation,the experimental rats in each group were subdivided into 3-,6-and 12-hour subgroups (n=12).At various time points after operation,the mortality rate of rats and pathological changes in the small intestine and immune organs were recorded and the serum amylase levels were measured.RESULTS:Compared to the model control groups,the mortality rates in all treated groups declined and the pathological changes in the small intestine and immune tissues were relieved to different degrees.The serum amylase levels in the three treated groups were significantly lower than those in the model control group at 12 hours.The pathological severity scores for the small intestinal mucosa,thymus and spleen (at 3 and 12 hours) in the Ligustrazine-treated group,for the thymus (at 3 and 12 hours) and spleen (at 3 and 6 hours) in the Kakonein-treated group,and for the thymus (at 3 hours)and spleen (at 3 hours) in the Panax Notoginsenoside-treated group were significantly lower than those in the model control group.The pathological severity scores of the small intestinal mucosa (at 6 and 12 hours) and thymus (at 6 hours) in the Ligustrazine-treated group were significantly lower than those in the Kakonein-and Panax Notoginsenoside-treated groups.CONCLUSIONS:All the three traditional Chinese drugs significantly alleviated the pathological changes in the small intestine and immune organs of SAP rats.Ligustrazine was the most effective one among them.
文摘There is a critical shortage of organs, cells, and corneas from deceased human donors worldwide. There are also shortages of human blood for transfusion. A potential solution to all of these problems is the transplantation of organs, cells, and corneas from a readily available animal species, such as the pig, and the transfusion of red blood cells from pigs into humans. However, to achieve these ends, major immunologic and other barriers have to be overcome. Considerable progress has been made in this respect by the genetic modification of pigs to protect their tissues from the primate immune response and to correct several molecular incompatibilities that exist between pig and primate. These have included knockout of genes responsible for the expression of major antigenic targets for primate natural anti-pig antibodies, insertion of human complement- and coagulation-regulatory transgenes, and knockdown of swine leukocyte antigens that stimulate the primate's adaptive immune response. As a result of these manipulations, the administration of novel immunosuppressive agents, and other innovations, pig hearts have now functioned in baboons for 6-8 months, pig islets have maintained normoglycemia in diabetic monkeys for 〉 1 year, and pig corneas have maintained transparency for several months. Clinical trials of pig islet trans- plantation are already in progress. Future developments will involve further genetic manipulations of the organ- source pig, with most of the genes that are likely to be beneficial already identified.
文摘Radiation for targeting liver tumors can be challenging because of the damage that it can cause to sensitive organs such as heart and kidney.To calculate the dose received by noninvolved organs,a modeling of the patient’s entire body is necessary.Therefore,in this study,a human Oak Ridge National Laboratory-Medical Internal Radiation Dose phantom was used for liver proton therapy simulation.The results show that the optimum proton energy interval covering the whole tumor was in the range of 90-120 MeV.A spread-out Bragg peak was built by adding Bragg peaks to cover the liver tumor volume,and beam parameters recommended by the International Commission on Radiation Units and Measurements(ICRU) were evaluated.The flux of secondary particles was calculated on the surface of the tumor,and two-dimensional dose distributions for protons,neutrons and photons were shown.Finally,the total doses of protons,photons and neutrons in tumor and 14 noninvolved organs were calculated.The results indicated that the ratio of received dose to the normal tissue of the liver concerning the spherical tumor of 2 cm in radius was approximately0.01.This ratio for organs such as gall bladder,heart and kidney was approximately 8.4×10-5,5.1×10-5 and2.34×10-5.Secondary particles such as neutrons andphotons deposit their energies to organs located far from the treatment volume,thus increasing the risk of secondary cancers.The research results indicated that the secondary particles dose was quite small in liver proton therapy.All the calculations were performed using Monte Carlo N-Particle Transport Code (MCNP).
基金financially supported by the National Natural Science Foundation of China (U1203283, 31260295)the Special Launching Funds for High-Level Talents of Shihezi University, China (RCZX201005)the Australian Research Council (DP1093827)
文摘Water deficit is one of the most important causes of decreased yield in cultivated plants. Non-foliar green organs in cotton play an important role in yield formation at the late growth stage. Although better photosynthetic performance was observed in a non-foliar organ (bract) compared with leaves under water deficit. However, the physiological response of each organ in cotton to water deficit has not been comprehensively studied in relation to the water status and photosynthesis characteristics. We studied the maintenance of water status of each organ in cotton by measuring their relative water content, proline content and stomatal characteristics. Water deficit significantly decreased the surface area of each organ, but to a lesser extent in non-foliar organs. Our results showed that the relative contribution of biomass accumulation of non-foliar organs increased under water deficit. Non-foliar organs (bracts and capsule wall) showed less ontogenetic decrease in O2 evolution capacity and in RuBPC activity (per dry weight) as well as better antioxidant systems than leaves at various days after anthesis. We conclude that the photosynthesis from non-foliar organs is important for increasing cotton yield especially under water deficit conditions.
基金funded by Nation Key Technology R&D Program during the 11th Five-Year Plan Period(2008BADB3- B01)Forage Germplasm Resources Protection Project(Maintenance,Reproduction and Storage of Temperate Backup Library of Forage,2008-11)Crop Germplasm Conservation and Utilization Project of the Ministry of Agriculture (NB08-2130135-43)
文摘The anatomical structures of roots, stems and leaves are very important indicators to'evaluate drought resistance. The paper reports the relationship between anatomical structures of vegetative organs and drought resistance in forages.