The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activat...The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activated carbon made from coconut shells. The activated carbons were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy-energy dispersive x-ray (SEM-EDX). The adsorption column dynamics were studied by varying the flow rates (5, 10 and 15 mL/min), bed heights (10, 15 and 20 cm), and initial concentrations (50, 150, and 250 mg/L). The activated carbon has a pore volume of 0.715 cm3/g and a BET-specific surface area of 1410 m2/g. Sodium dodecyl sulfate (SDS) surfactant incorporation onto the surface of the activated carbon enhances its capacity for simultaneous adsorption of Pb2+, Cu2+, Zn2+, and Cd2+ from the aqueous medium. The affinity of the heavy metals to both unmodified (AC) and modified (AC-SDS) activated carbons followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The dynamic adsorption of the column depends on the flow rate, bed height, initial metal concentration, and SDS surface modification. With a 5 mL/min flow rate, a 20 cm bed height, and a 50 mg/L initial metal concentration, a maximum break-through time of 150 minutes for the unmodified activated carbon (AC) and 180 minutes for the SDS-modified activated carbon (AC-SDS) was reached.展开更多
Chlorophyll a (Chl a) concentration and primary productivity (PP), namely, carbon fixed strength of phytoplankton along four transects in the southern Huanghai Sea (SHS) were studied for their distribution featu...Chlorophyll a (Chl a) concentration and primary productivity (PP), namely, carbon fixed strength of phytoplankton along four transects in the southern Huanghai Sea (SHS) were studied for their distribution features and controlling mechanisms based on the investigations from 17 October to 3 November 2005. The Chl a concentration in the study waters dynamically changed spatially. Surface Chl a concentrations ranged from 0.11 to 2.38 mg/m^3 with higher and lower values observed in the nutrient-laden inshore waters and central part of the SHS occupied by oligotrophic current, respectively. The vertical distribution of Chl a concentration showed a predominant pattern of subsurface concentration maximum profile. It followed the previous result of the deep dissolved oxygen concentration maximum profile, which was significantly correlated with phytoplankton and regional water mass. The primary productivity of carbon in autumn of the SHS, ranging from 95 to 1 634 rag/( m^2· d) mainly varied with nutrient condition, especially phosphate concentration in seawater and hydrological condition. Furthermore, associating the present study results together with previous studies, the annual value of carbon fixed production of phytoplankton in the entire marginal seas of East China (including the Bohai Sea, the Huanghai Sea and the East China Sea) was estimated to be 222 Mt, which accounted for 2% of that in the global margins. Besides, it was as 16.2 times as the annual value of apparent carbon sink strength ( 13.96 Mt) in the marginal seas of East China. This multiple was different in different sea areas ( 3.0 in the Bohai Sea, 6. 7 in the Huanghai Sea and 81.6 in the East China Sea).展开更多
A batch fixed bed photoreactor,using felt-form activated carbon fibers(ACF)supported TiO2 photocatalyst(TiO2/ACF),was developed to carry out photocatalytic degradation of methylene blue(MB)solution.The effects of TiO2...A batch fixed bed photoreactor,using felt-form activated carbon fibers(ACF)supported TiO2 photocatalyst(TiO2/ACF),was developed to carry out photocatalytic degradation of methylene blue(MB)solution.The effects of TiO2 particle size,loaded TiO2 amount,initial MB concentration,airflow rate and successive run on the decomposition rate were investigated.The results showed that photodegradation process followed a pseudo-first-order reaction kinetic law.The apparent first-order reaction constant kapp was larger than 0.047 min- 1 with half reaction time t1/2 shorter than 15 min,which was comparable to reported data using suspended Degussa P-25 TiO2 particles.The high degradation rate was mainly attributed to adsorption of MB molecules onto the surface of TiO2/ACF.The photocatalytic efficiency still remained nearly 90%after 12 successive runs,showing that successive usage of the designed photoreactor was possible.The synergic enhancement effect in combination of adsorption with ACF and photodegradation with TiO2 was proved by comparing MB removal rates in the successive degradation and adsorption runs,respectively.展开更多
The immobilized photocatalyst, TiO2 film supported on activated carbon fibers (TiO2/ACFs) prepared with molecular adsorption-deposition (MAD), exhibits high stability in cyclic photodegradation runs. The interposition...The immobilized photocatalyst, TiO2 film supported on activated carbon fibers (TiO2/ACFs) prepared with molecular adsorption-deposition (MAD), exhibits high stability in cyclic photodegradation runs. The interposition fixing structure between TiO2 film and carbon fiber was investigated by means of SEM-EDX, XRD, XPS and FTIR, and a model was proposed to explain this structure. With SEM examination of carbon fiber surface after removing the deposited TiO2 film, a residual TiO2 super-thin film was found to exist still. By determining surface groups on ACFs, titanium sulfate (Ti2(SO4)3) in burnt remainders of the TiO2/ACFs was thought to be formed with an interfacial reaction between TiO2 film and carbon fibers. These provide some evidence of firm attachment of TiO2 film to carbon fiber surface. In the consideration of characteristics of the MAD, the deposition mechanism of TiO2 film on ACFs was proposed, and the interposition fixing structure was inferred to intercrossedly form between TiO2 film and ACFs’ surface. This structure leaded to firm attachment and high stability of the TiO2 film.展开更多
In this study,the performances of fixed and fluidized bed reactors in the production of single-walled carbon nanotubes(SWNTs)have been investigated.In both reactors,single-walled carbon nanotubes were grown by catal...In this study,the performances of fixed and fluidized bed reactors in the production of single-walled carbon nanotubes(SWNTs)have been investigated.In both reactors,single-walled carbon nanotubes were grown by catalytic chemical vapor decomposition(CCVD)of methane over Co-Mo/MgO nanocatalyst under two different operating conditions.The synthesized samples were characterized by TEM,TGA and Raman spectroscopy.It is found that the performance of a fluidized bed in the synthesis of carbon nanotubes is much better than that of a fixed bed.The quality of carbon nanotubes obtained from the fluidized bed was significantly higher than that from the fixed bed and the former one with the ID/IG ratio of 0.11 while the latter one with the ID/IG ratio of 0.71.Also,the yield of SWNTs in the fluidized bed was 92 wt%,while it was 78 wt%in the fixed bed.These advantages of fluidized bed reactors for the synthesis of carbon nanotubes can be attributed to more available space for the growth of carbon nanotubes and more uniform temperature and concentration profiles.展开更多
In this article, coke plant wastewater was treated by a simultaneous nitrifying and denitrifying (SND) fixed biofilm hybrid system. The results showed that suitable parameters of the system were important for the pe...In this article, coke plant wastewater was treated by a simultaneous nitrifying and denitrifying (SND) fixed biofilm hybrid system. The results showed that suitable parameters of the system were important for the performance of the bio-degradation system. The chemical oxygen demand (COD) removal efficiency in this system was satisfactory, higher than 94%, and ammonia nitrogen was higher than 95%. The effluent COD concentration could meet the discharge standard, except for very few situations. The results showed that a sufficient carbon source was important for making ammonia nitrogen concentration meet the discharge standard. Then the TiN removal efficiency in this system can be brought higher than 94%. Dissolved oxygen (DO) is very important to the performance of the SND bio-degradation system, and the suitable DO is about 3.5-4.0 mg/L at the forepart of reactor. In addition, the performance of the system was almost not affected by pH value. The results show that the system is feasible to treat coke plant wastewater.展开更多
In designing a fixed-bed adsorber, it is vital to understand dynamic adsorption properties of the unit. Temperature is an important effect on adsorbent performance, as the dynamic adsorption coefficients tend to incre...In designing a fixed-bed adsorber, it is vital to understand dynamic adsorption properties of the unit. Temperature is an important effect on adsorbent performance, as the dynamic adsorption coefficients tend to increase with decreasing temperature. To minimize the volume of the fixed-bed adsorber, the dynamic adsorption characteristics of Xe were studied at 77 K by employing a variety of adsorbents under different operational conditions. The carbon molecular sieve performed better than that of activated carbon. Both operational conditions and the presence of gaseous impurities were found to affect the adsorption properties.展开更多
Carbon fiber microelectrodes (CFEs) are useful when combined with electrochemical techniques for measuring changes in neurotransmitter concentrations. We addressed conflicting details regarding the use of CFEs. Experi...Carbon fiber microelectrodes (CFEs) are useful when combined with electrochemical techniques for measuring changes in neurotransmitter concentrations. We addressed conflicting details regarding the use of CFEs. Experimental groups consisted of CFEs at different ages (1 week, 1 month, or 2 months), cleaned in solvents (isopropanol or xylene), and exposed to in vitro use (flow cell calibrations) or in vivo use (in brain tissue). In order to determine if any of these factors affect CFE sensitivity, the present study utilized fixed potential amperometry and a flow injection system to calibrate CFEs for the measurement of dopamine. The sensitivity index (nA/μM per 100 μm of exposed carbon fiber) was not affected by the age of CFEs or pre-cleaning with xylene or isopropanol. CFE sensitivity of the in vitro exposure group also did not differ from untreated CFEs, indicating the calibration process did not alter sensitivity. However, in vivo use in brain tissue did reduce sensitivity. This effect was negated and sensitivity restored by cleaning CFEs in isopropanol or xylene following in vivo brain recordings. Given that variations in CFE sensitivity can skew results, our findings can help standardize CFE use and explain discrepancies between researchers.展开更多
In this work, the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched. Adsorption equilibrium and kinetics have b...In this work, the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched. Adsorption equilibrium and kinetics have been measured in a fixed-bed, and the adsorption equilibrium parameters of carbon dioxide and methane on sepiolite have been obtained. A model based on the LDF approximation has been employed to simulate the fixed-bed kinetics, using the Langmuir equation to describe the adsorption equilibrium isotherm. The functioning of a PSA cycle for separating carbon dioxide/methane mixtures using sepiolite as adsorbent has also been studied. The experimental results were compared with the ones predicted by the model adapted to a PSA system. Methane with purity higher than 97% can be obtained from feeds containing carbon dioxide with concentrations ranging from 34% to 56% with the proposed PSA cycle. These results suggest that sepiolite is an adsorbent with good properties for its employment in a PSA cycle for carbon dioxide removal from landfill gases.展开更多
P-nitrophenol(PNP) adsorption in batch and fixed bed adsorbers was studied. The homogeneous surface diffusion model(HSDM) based on external mass transfer and intraparticle surface diffusion was used to describe th...P-nitrophenol(PNP) adsorption in batch and fixed bed adsorbers was studied. The homogeneous surface diffusion model(HSDM) based on external mass transfer and intraparticle surface diffusion was used to describe the adsorption kinetics for PNP in stirred batch adsorber at various initial concentrations and activated carbon dosages. The fixed bed model considering both external and internal mass transfer resistances as well as axial dispersion with non-linear isotherm was utilized to predict the fixed bed breakthrough curves for PNP adsorption under the conditions of different flow rates and inlet concentrations. The equilibrium parameters and surface diffusivity(Ds) were obtained from separate experiments in batch adsorber. The obtained value of Ds is 4.187×1012 m2/s. The external film mass transfer coefficient(kf) and axial dispersion coefficient(DL) were estimated by the correlations of Goeuret and Wike-Chang. The Biot number determined by HSDM indicated that the adsorption rate of PNP onto activated carbon in stirred batch was controlled by intraparticle diffusion and film mass transfer. A sensitivity analysis was carried out and showed that the fixed bed model calculations were sensitive to Ds and kf, but insensitive to DL. The sensitivity analysis and Biot number both confirm that intraparticle diffusion and film mass transfer are the controlling mass transfer mechanism in fixed bed adsorption system.展开更多
Methacrylic acid first was neutralized with an aqueous solution of NaOH to pH = 6.0 similar to 7.0, vinylene carbonate (VCA) was added to the solution, then monomers were copolymerized in paraffin oil by means of reve...Methacrylic acid first was neutralized with an aqueous solution of NaOH to pH = 6.0 similar to 7.0, vinylene carbonate (VCA) was added to the solution, then monomers were copolymerized in paraffin oil by means of reverse-phase suspension polymerization and hydrophilic copolymeric supports were prepared. The properties of the supports were determined using trypsin and results show that the amount of enzymes coupled to the supports and the specific activity of immobilized trypsin are related to the content of VCA structure units, reaction time and concentration of enzyme solution, etc.展开更多
文摘The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activated carbon made from coconut shells. The activated carbons were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy-energy dispersive x-ray (SEM-EDX). The adsorption column dynamics were studied by varying the flow rates (5, 10 and 15 mL/min), bed heights (10, 15 and 20 cm), and initial concentrations (50, 150, and 250 mg/L). The activated carbon has a pore volume of 0.715 cm3/g and a BET-specific surface area of 1410 m2/g. Sodium dodecyl sulfate (SDS) surfactant incorporation onto the surface of the activated carbon enhances its capacity for simultaneous adsorption of Pb2+, Cu2+, Zn2+, and Cd2+ from the aqueous medium. The affinity of the heavy metals to both unmodified (AC) and modified (AC-SDS) activated carbons followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The dynamic adsorption of the column depends on the flow rate, bed height, initial metal concentration, and SDS surface modification. With a 5 mL/min flow rate, a 20 cm bed height, and a 50 mg/L initial metal concentration, a maximum break-through time of 150 minutes for the unmodified activated carbon (AC) and 180 minutes for the SDS-modified activated carbon (AC-SDS) was reached.
文摘Chlorophyll a (Chl a) concentration and primary productivity (PP), namely, carbon fixed strength of phytoplankton along four transects in the southern Huanghai Sea (SHS) were studied for their distribution features and controlling mechanisms based on the investigations from 17 October to 3 November 2005. The Chl a concentration in the study waters dynamically changed spatially. Surface Chl a concentrations ranged from 0.11 to 2.38 mg/m^3 with higher and lower values observed in the nutrient-laden inshore waters and central part of the SHS occupied by oligotrophic current, respectively. The vertical distribution of Chl a concentration showed a predominant pattern of subsurface concentration maximum profile. It followed the previous result of the deep dissolved oxygen concentration maximum profile, which was significantly correlated with phytoplankton and regional water mass. The primary productivity of carbon in autumn of the SHS, ranging from 95 to 1 634 rag/( m^2· d) mainly varied with nutrient condition, especially phosphate concentration in seawater and hydrological condition. Furthermore, associating the present study results together with previous studies, the annual value of carbon fixed production of phytoplankton in the entire marginal seas of East China (including the Bohai Sea, the Huanghai Sea and the East China Sea) was estimated to be 222 Mt, which accounted for 2% of that in the global margins. Besides, it was as 16.2 times as the annual value of apparent carbon sink strength ( 13.96 Mt) in the marginal seas of East China. This multiple was different in different sea areas ( 3.0 in the Bohai Sea, 6. 7 in the Huanghai Sea and 81.6 in the East China Sea).
基金Beijing Excellent Talents Training Fund(No.20061D0502200299)
文摘A batch fixed bed photoreactor,using felt-form activated carbon fibers(ACF)supported TiO2 photocatalyst(TiO2/ACF),was developed to carry out photocatalytic degradation of methylene blue(MB)solution.The effects of TiO2 particle size,loaded TiO2 amount,initial MB concentration,airflow rate and successive run on the decomposition rate were investigated.The results showed that photodegradation process followed a pseudo-first-order reaction kinetic law.The apparent first-order reaction constant kapp was larger than 0.047 min- 1 with half reaction time t1/2 shorter than 15 min,which was comparable to reported data using suspended Degussa P-25 TiO2 particles.The high degradation rate was mainly attributed to adsorption of MB molecules onto the surface of TiO2/ACF.The photocatalytic efficiency still remained nearly 90%after 12 successive runs,showing that successive usage of the designed photoreactor was possible.The synergic enhancement effect in combination of adsorption with ACF and photodegradation with TiO2 was proved by comparing MB removal rates in the successive degradation and adsorption runs,respectively.
文摘The immobilized photocatalyst, TiO2 film supported on activated carbon fibers (TiO2/ACFs) prepared with molecular adsorption-deposition (MAD), exhibits high stability in cyclic photodegradation runs. The interposition fixing structure between TiO2 film and carbon fiber was investigated by means of SEM-EDX, XRD, XPS and FTIR, and a model was proposed to explain this structure. With SEM examination of carbon fiber surface after removing the deposited TiO2 film, a residual TiO2 super-thin film was found to exist still. By determining surface groups on ACFs, titanium sulfate (Ti2(SO4)3) in burnt remainders of the TiO2/ACFs was thought to be formed with an interfacial reaction between TiO2 film and carbon fibers. These provide some evidence of firm attachment of TiO2 film to carbon fiber surface. In the consideration of characteristics of the MAD, the deposition mechanism of TiO2 film on ACFs was proposed, and the interposition fixing structure was inferred to intercrossedly form between TiO2 film and ACFs’ surface. This structure leaded to firm attachment and high stability of the TiO2 film.
文摘In this study,the performances of fixed and fluidized bed reactors in the production of single-walled carbon nanotubes(SWNTs)have been investigated.In both reactors,single-walled carbon nanotubes were grown by catalytic chemical vapor decomposition(CCVD)of methane over Co-Mo/MgO nanocatalyst under two different operating conditions.The synthesized samples were characterized by TEM,TGA and Raman spectroscopy.It is found that the performance of a fluidized bed in the synthesis of carbon nanotubes is much better than that of a fixed bed.The quality of carbon nanotubes obtained from the fluidized bed was significantly higher than that from the fixed bed and the former one with the ID/IG ratio of 0.11 while the latter one with the ID/IG ratio of 0.71.Also,the yield of SWNTs in the fluidized bed was 92 wt%,while it was 78 wt%in the fixed bed.These advantages of fluidized bed reactors for the synthesis of carbon nanotubes can be attributed to more available space for the growth of carbon nanotubes and more uniform temperature and concentration profiles.
文摘In this article, coke plant wastewater was treated by a simultaneous nitrifying and denitrifying (SND) fixed biofilm hybrid system. The results showed that suitable parameters of the system were important for the performance of the bio-degradation system. The chemical oxygen demand (COD) removal efficiency in this system was satisfactory, higher than 94%, and ammonia nitrogen was higher than 95%. The effluent COD concentration could meet the discharge standard, except for very few situations. The results showed that a sufficient carbon source was important for making ammonia nitrogen concentration meet the discharge standard. Then the TiN removal efficiency in this system can be brought higher than 94%. Dissolved oxygen (DO) is very important to the performance of the SND bio-degradation system, and the suitable DO is about 3.5-4.0 mg/L at the forepart of reactor. In addition, the performance of the system was almost not affected by pH value. The results show that the system is feasible to treat coke plant wastewater.
基金supported by the National Natural Science Foundation of China(No.11405134)
文摘In designing a fixed-bed adsorber, it is vital to understand dynamic adsorption properties of the unit. Temperature is an important effect on adsorbent performance, as the dynamic adsorption coefficients tend to increase with decreasing temperature. To minimize the volume of the fixed-bed adsorber, the dynamic adsorption characteristics of Xe were studied at 77 K by employing a variety of adsorbents under different operational conditions. The carbon molecular sieve performed better than that of activated carbon. Both operational conditions and the presence of gaseous impurities were found to affect the adsorption properties.
文摘Carbon fiber microelectrodes (CFEs) are useful when combined with electrochemical techniques for measuring changes in neurotransmitter concentrations. We addressed conflicting details regarding the use of CFEs. Experimental groups consisted of CFEs at different ages (1 week, 1 month, or 2 months), cleaned in solvents (isopropanol or xylene), and exposed to in vitro use (flow cell calibrations) or in vivo use (in brain tissue). In order to determine if any of these factors affect CFE sensitivity, the present study utilized fixed potential amperometry and a flow injection system to calibrate CFEs for the measurement of dopamine. The sensitivity index (nA/μM per 100 μm of exposed carbon fiber) was not affected by the age of CFEs or pre-cleaning with xylene or isopropanol. CFE sensitivity of the in vitro exposure group also did not differ from untreated CFEs, indicating the calibration process did not alter sensitivity. However, in vivo use in brain tissue did reduce sensitivity. This effect was negated and sensitivity restored by cleaning CFEs in isopropanol or xylene following in vivo brain recordings. Given that variations in CFE sensitivity can skew results, our findings can help standardize CFE use and explain discrepancies between researchers.
文摘In this work, the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched. Adsorption equilibrium and kinetics have been measured in a fixed-bed, and the adsorption equilibrium parameters of carbon dioxide and methane on sepiolite have been obtained. A model based on the LDF approximation has been employed to simulate the fixed-bed kinetics, using the Langmuir equation to describe the adsorption equilibrium isotherm. The functioning of a PSA cycle for separating carbon dioxide/methane mixtures using sepiolite as adsorbent has also been studied. The experimental results were compared with the ones predicted by the model adapted to a PSA system. Methane with purity higher than 97% can be obtained from feeds containing carbon dioxide with concentrations ranging from 34% to 56% with the proposed PSA cycle. These results suggest that sepiolite is an adsorbent with good properties for its employment in a PSA cycle for carbon dioxide removal from landfill gases.
基金Funded by the Research Fund of the Guangdong Provincial Laboratory of Green Chemical Product Technology(China)the Science Foundation for Young Teachers of Wuyi University(No.2013zk11)
文摘P-nitrophenol(PNP) adsorption in batch and fixed bed adsorbers was studied. The homogeneous surface diffusion model(HSDM) based on external mass transfer and intraparticle surface diffusion was used to describe the adsorption kinetics for PNP in stirred batch adsorber at various initial concentrations and activated carbon dosages. The fixed bed model considering both external and internal mass transfer resistances as well as axial dispersion with non-linear isotherm was utilized to predict the fixed bed breakthrough curves for PNP adsorption under the conditions of different flow rates and inlet concentrations. The equilibrium parameters and surface diffusivity(Ds) were obtained from separate experiments in batch adsorber. The obtained value of Ds is 4.187×1012 m2/s. The external film mass transfer coefficient(kf) and axial dispersion coefficient(DL) were estimated by the correlations of Goeuret and Wike-Chang. The Biot number determined by HSDM indicated that the adsorption rate of PNP onto activated carbon in stirred batch was controlled by intraparticle diffusion and film mass transfer. A sensitivity analysis was carried out and showed that the fixed bed model calculations were sensitive to Ds and kf, but insensitive to DL. The sensitivity analysis and Biot number both confirm that intraparticle diffusion and film mass transfer are the controlling mass transfer mechanism in fixed bed adsorption system.
文摘Methacrylic acid first was neutralized with an aqueous solution of NaOH to pH = 6.0 similar to 7.0, vinylene carbonate (VCA) was added to the solution, then monomers were copolymerized in paraffin oil by means of reverse-phase suspension polymerization and hydrophilic copolymeric supports were prepared. The properties of the supports were determined using trypsin and results show that the amount of enzymes coupled to the supports and the specific activity of immobilized trypsin are related to the content of VCA structure units, reaction time and concentration of enzyme solution, etc.