大规模安全约束机组组合(security constrained unit commitment,SCUC)问题的混合整数线性规划(mixed integer linear programming,MILP)模型因其高维、非凸的特点导致求解困难,尤其在考虑故障态安全约束后模型规模骤增,MILP算法常遇到...大规模安全约束机组组合(security constrained unit commitment,SCUC)问题的混合整数线性规划(mixed integer linear programming,MILP)模型因其高维、非凸的特点导致求解困难,尤其在考虑故障态安全约束后模型规模骤增,MILP算法常遇到收敛间隙下降瓶颈问题。为满足现货市场出清对SCUC问题求解时间的要求,提出了基于热启动的快速求解方法,从待求模型的一个可行解出发,根据节点边际电价和机组收益分析进行整数变量固定,同时削减无约束力的安全约束,以缩减模型规模,加快收敛进程。仿真结果表明:所提方法能够大幅缩减SCUC模型规模,尤其对于考虑故障态安全约束的大规模SCUC问题,能有效克服收敛间隙下降瓶颈问题,求解效率提高特别显著。展开更多
Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under trans...Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.展开更多
文摘大规模安全约束机组组合(security constrained unit commitment,SCUC)问题的混合整数线性规划(mixed integer linear programming,MILP)模型因其高维、非凸的特点导致求解困难,尤其在考虑故障态安全约束后模型规模骤增,MILP算法常遇到收敛间隙下降瓶颈问题。为满足现货市场出清对SCUC问题求解时间的要求,提出了基于热启动的快速求解方法,从待求模型的一个可行解出发,根据节点边际电价和机组收益分析进行整数变量固定,同时削减无约束力的安全约束,以缩减模型规模,加快收敛进程。仿真结果表明:所提方法能够大幅缩减SCUC模型规模,尤其对于考虑故障态安全约束的大规模SCUC问题,能有效克服收敛间隙下降瓶颈问题,求解效率提高特别显著。
文摘Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.