The formula of the thickness of the heat-insulating layer is deduced via heat transfer analysis,according to the principle of heat transfer in limited space.Polishing experiments are carried out using the same technol...The formula of the thickness of the heat-insulating layer is deduced via heat transfer analysis,according to the principle of heat transfer in limited space.Polishing experiments are carried out using the same technological parameters.Compared with the polishing experimental results,the heat transfer model is proved to be correct.As validated by the experimental results,polyurethane heat-insulating layer can effectively improve the service life of the ice fixed abrasive pad and alleviate the melting rate in the polishing process to improve the polishing quality proposed.The heat transfer model provides theoretical basis for research of temperature field of ice fixed abrasive polishing.展开更多
The subsurface damage(SSD)layers of monocrystalline germanium wafers lapped by three different ways were measured and compared by the method of nanoindentation and micro morphology.Three ways such as ice-fixed abrasiv...The subsurface damage(SSD)layers of monocrystalline germanium wafers lapped by three different ways were measured and compared by the method of nanoindentation and micro morphology.Three ways such as ice-fixed abrasive,thermosetting fixed abrasive and free abrasive lappings are adopted to lap monocrystalline germanium wafers.The SSD depth was measured by a nanoindenter,and the morphology of SSD layer was observed by an atomic force microscopy(AFM).The results show that the SSD layer of monocrystalline germanium wafer is mainly composed of soft corrosion layer and plastic scratch and crack growth layer.Compared with thermosetting fixed abrasive and free abrasive lappings,the SSD depth lapped with ice-fixed abrasive is shallower.Moreover,the SSD morphology of monocrystalline germanium wafer lapped with ice-fixed abrasive is superior to those of two other processing ways.展开更多
This research has successfully developed an advance d manufacturing system for 300mm silicon wafer,using fixed abrasive instead o f conventional free slurry,to provide a totally integrated solution for achievi ng the ...This research has successfully developed an advance d manufacturing system for 300mm silicon wafer,using fixed abrasive instead o f conventional free slurry,to provide a totally integrated solution for achievi ng the surface roughness Ra<1 nm(Ry<5~6 nm) and the global flatness<O.2μm /300 mm.In addition to high throughput rate,this system significantly reduc es the total energy consumption by 70%,compared with the current process used for 200mm Si wafer.This paper describes the principle of material removal,st ate-of-the-art technologies and kinematical analysis for one-stop finishing o f 300mm Si wafer by fixed abrasive process.展开更多
基金supported by the National Natural Science Foundation of China(No.51375237)the Natural Science Foundation of Jiangsu Province(No.BK2012796)the Scientific Research Start Project of Talent Introduction of NUAA(No.1005-56YAH)
文摘The formula of the thickness of the heat-insulating layer is deduced via heat transfer analysis,according to the principle of heat transfer in limited space.Polishing experiments are carried out using the same technological parameters.Compared with the polishing experimental results,the heat transfer model is proved to be correct.As validated by the experimental results,polyurethane heat-insulating layer can effectively improve the service life of the ice fixed abrasive pad and alleviate the melting rate in the polishing process to improve the polishing quality proposed.The heat transfer model provides theoretical basis for research of temperature field of ice fixed abrasive polishing.
基金supported by the National Natural Science Foundation of China(No.51375237)the Postdoctoral Science Foundation of China(No.2015T80547)
文摘The subsurface damage(SSD)layers of monocrystalline germanium wafers lapped by three different ways were measured and compared by the method of nanoindentation and micro morphology.Three ways such as ice-fixed abrasive,thermosetting fixed abrasive and free abrasive lappings are adopted to lap monocrystalline germanium wafers.The SSD depth was measured by a nanoindenter,and the morphology of SSD layer was observed by an atomic force microscopy(AFM).The results show that the SSD layer of monocrystalline germanium wafer is mainly composed of soft corrosion layer and plastic scratch and crack growth layer.Compared with thermosetting fixed abrasive and free abrasive lappings,the SSD depth lapped with ice-fixed abrasive is shallower.Moreover,the SSD morphology of monocrystalline germanium wafer lapped with ice-fixed abrasive is superior to those of two other processing ways.
文摘This research has successfully developed an advance d manufacturing system for 300mm silicon wafer,using fixed abrasive instead o f conventional free slurry,to provide a totally integrated solution for achievi ng the surface roughness Ra<1 nm(Ry<5~6 nm) and the global flatness<O.2μm /300 mm.In addition to high throughput rate,this system significantly reduc es the total energy consumption by 70%,compared with the current process used for 200mm Si wafer.This paper describes the principle of material removal,st ate-of-the-art technologies and kinematical analysis for one-stop finishing o f 300mm Si wafer by fixed abrasive process.