We have proposed a primal-dual fixed point algorithm (PDFP) for solving minimiza- tion of the sum of three convex separable functions, which involves a smooth function with Lipschitz continuous gradient, a linear co...We have proposed a primal-dual fixed point algorithm (PDFP) for solving minimiza- tion of the sum of three convex separable functions, which involves a smooth function with Lipschitz continuous gradient, a linear composite nonsmooth function, and a nonsmooth function. Compared with similar works, the parameters in PDFP are easier to choose and are allowed in a relatively larger range. We will extend PDFP to solve two kinds of separable multi-block minimization problems, arising in signal processing and imaging science. This work shows the flexibility of applying PDFP algorithm to multi-block prob- lems and illustrates how practical and fully splitting schemes can be derived, especially for parallel implementation of large scale problems. The connections and comparisons to the alternating direction method of multiplier (ADMM) are also present. We demonstrate how different algorithms can be obtained by splitting the problems in different ways through the classic example of sparsity regularized least square model with constraint. In particular, for a class of linearly constrained problems, which are of great interest in the context of multi-block ADMM, can be also solved by PDFP with a guarantee of convergence. Finally, some experiments are provided to illustrate the performance of several schemes derived by the PDFP algorithm.展开更多
Regularized minimization problems with nonconvex, nonsmooth, even non-Lipschitz penalty functions have attracted much attention in recent years, owing to their wide applications in statistics, control,system identific...Regularized minimization problems with nonconvex, nonsmooth, even non-Lipschitz penalty functions have attracted much attention in recent years, owing to their wide applications in statistics, control,system identification and machine learning. In this paper, the non-Lipschitz ?_p(0 < p < 1) regularized matrix minimization problem is studied. A global necessary optimality condition for this non-Lipschitz optimization problem is firstly obtained, specifically, the global optimal solutions for the problem are fixed points of the so-called p-thresholding operator which is matrix-valued and set-valued. Then a fixed point iterative scheme for the non-Lipschitz model is proposed, and the convergence analysis is also addressed in detail. Moreover,some acceleration techniques are adopted to improve the performance of this algorithm. The effectiveness of the proposed p-thresholding fixed point continuation(p-FPC) algorithm is demonstrated by numerical experiments on randomly generated and real matrix completion problems.展开更多
This paper concerns computational problems of the concave penalized linear regression model.We propose a fixed point iterative algorithm to solve the computational problem based on the fact that the penalized estimato...This paper concerns computational problems of the concave penalized linear regression model.We propose a fixed point iterative algorithm to solve the computational problem based on the fact that the penalized estimator satisfies a fixed point equation.The convergence property of the proposed algorithm is established.Numerical studies are conducted to evaluate the finite sample performance of the proposed algorithm.展开更多
The quantile regression has several useful features and therefore is gradually developing into a comprehensive approach to the statistical analysis of linear and nonlinear response models,but it cannot deal effectivel...The quantile regression has several useful features and therefore is gradually developing into a comprehensive approach to the statistical analysis of linear and nonlinear response models,but it cannot deal effectively with the data with a hierarchical structure.In practice,the existence of such data hierarchies is neither accidental nor ignorable,it is a common phenomenon.To ignore this hierarchical data structure risks overlooking the importance of group effects,and may also render many of the traditional statistical analysis techniques used for studying data relationships invalid.On the other hand,the hierarchical models take a hierarchical data structure into account and have also many applications in statistics,ranging from overdispersion to constructing min-max estimators.However,the hierarchical models are virtually the mean regression,therefore,they cannot be used to characterize the entire conditional distribution of a dependent variable given high-dimensional covariates.Furthermore,the estimated coefficient vector (marginal effects)is sensitive to an outlier observation on the dependent variable.In this article,a new approach,which is based on the Gauss-Seidel iteration and taking a full advantage of the quantile regression and hierarchical models,is developed.On the theoretical front,we also consider the asymptotic properties of the new method,obtaining the simple conditions for an n1/2-convergence and an asymptotic normality.We also illustrate the use of the technique with the real educational data which is hierarchical and how the results can be explained.展开更多
Multilevel (hierarchical) modeling is a generalization of linear and generalized linear modeling in which regression coefficients are modeled through a model, whose parameters are also estimated from data. Multileve...Multilevel (hierarchical) modeling is a generalization of linear and generalized linear modeling in which regression coefficients are modeled through a model, whose parameters are also estimated from data. Multilevel model fails to fit well typically by the use of the EM algorithm once one of level error variance (like Cauchy distribution) tends to infinity. This paper proposes a composite multilevel to combine the nested structure of multilevel data and the robustness of the composite quantile regression, which greatly improves the efficiency and precision of the estimation. The new approach, which is based on the Gauss-Seidel iteration and takes a full advantage of the composite quantile regression and multilevel models, still works well when the error variance tends to infinity, We show that even the error distribution is normal, the MSE of the estimation of composite multilevel quantile regression models nearly equals to mean regression. When the error distribution is not normal, our method still enjoys great advantages in terms of estimation efficiency.展开更多
文摘We have proposed a primal-dual fixed point algorithm (PDFP) for solving minimiza- tion of the sum of three convex separable functions, which involves a smooth function with Lipschitz continuous gradient, a linear composite nonsmooth function, and a nonsmooth function. Compared with similar works, the parameters in PDFP are easier to choose and are allowed in a relatively larger range. We will extend PDFP to solve two kinds of separable multi-block minimization problems, arising in signal processing and imaging science. This work shows the flexibility of applying PDFP algorithm to multi-block prob- lems and illustrates how practical and fully splitting schemes can be derived, especially for parallel implementation of large scale problems. The connections and comparisons to the alternating direction method of multiplier (ADMM) are also present. We demonstrate how different algorithms can be obtained by splitting the problems in different ways through the classic example of sparsity regularized least square model with constraint. In particular, for a class of linearly constrained problems, which are of great interest in the context of multi-block ADMM, can be also solved by PDFP with a guarantee of convergence. Finally, some experiments are provided to illustrate the performance of several schemes derived by the PDFP algorithm.
基金supported by National Natural Science Foundation of China(Grant Nos.11401124 and 71271021)the Scientific Research Projects for the Introduced Talents of Guizhou University(Grant No.201343)the Key Program of National Natural Science Foundation of China(Grant No.11431002)
文摘Regularized minimization problems with nonconvex, nonsmooth, even non-Lipschitz penalty functions have attracted much attention in recent years, owing to their wide applications in statistics, control,system identification and machine learning. In this paper, the non-Lipschitz ?_p(0 < p < 1) regularized matrix minimization problem is studied. A global necessary optimality condition for this non-Lipschitz optimization problem is firstly obtained, specifically, the global optimal solutions for the problem are fixed points of the so-called p-thresholding operator which is matrix-valued and set-valued. Then a fixed point iterative scheme for the non-Lipschitz model is proposed, and the convergence analysis is also addressed in detail. Moreover,some acceleration techniques are adopted to improve the performance of this algorithm. The effectiveness of the proposed p-thresholding fixed point continuation(p-FPC) algorithm is demonstrated by numerical experiments on randomly generated and real matrix completion problems.
基金Supported by the National Natural Science Foundation of China(11701571)
文摘This paper concerns computational problems of the concave penalized linear regression model.We propose a fixed point iterative algorithm to solve the computational problem based on the fact that the penalized estimator satisfies a fixed point equation.The convergence property of the proposed algorithm is established.Numerical studies are conducted to evaluate the finite sample performance of the proposed algorithm.
文摘The quantile regression has several useful features and therefore is gradually developing into a comprehensive approach to the statistical analysis of linear and nonlinear response models,but it cannot deal effectively with the data with a hierarchical structure.In practice,the existence of such data hierarchies is neither accidental nor ignorable,it is a common phenomenon.To ignore this hierarchical data structure risks overlooking the importance of group effects,and may also render many of the traditional statistical analysis techniques used for studying data relationships invalid.On the other hand,the hierarchical models take a hierarchical data structure into account and have also many applications in statistics,ranging from overdispersion to constructing min-max estimators.However,the hierarchical models are virtually the mean regression,therefore,they cannot be used to characterize the entire conditional distribution of a dependent variable given high-dimensional covariates.Furthermore,the estimated coefficient vector (marginal effects)is sensitive to an outlier observation on the dependent variable.In this article,a new approach,which is based on the Gauss-Seidel iteration and taking a full advantage of the quantile regression and hierarchical models,is developed.On the theoretical front,we also consider the asymptotic properties of the new method,obtaining the simple conditions for an n1/2-convergence and an asymptotic normality.We also illustrate the use of the technique with the real educational data which is hierarchical and how the results can be explained.
基金The work was partially supported by Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(No.10XNL018)
文摘Multilevel (hierarchical) modeling is a generalization of linear and generalized linear modeling in which regression coefficients are modeled through a model, whose parameters are also estimated from data. Multilevel model fails to fit well typically by the use of the EM algorithm once one of level error variance (like Cauchy distribution) tends to infinity. This paper proposes a composite multilevel to combine the nested structure of multilevel data and the robustness of the composite quantile regression, which greatly improves the efficiency and precision of the estimation. The new approach, which is based on the Gauss-Seidel iteration and takes a full advantage of the composite quantile regression and multilevel models, still works well when the error variance tends to infinity, We show that even the error distribution is normal, the MSE of the estimation of composite multilevel quantile regression models nearly equals to mean regression. When the error distribution is not normal, our method still enjoys great advantages in terms of estimation efficiency.