期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterization of P-nitrophenol Adsorption Kinetic Properties in Batch and Fixed Bed Adsorbers
1
作者 邵琰 ZHANG Huiping 鄢瑛 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1152-1160,共9页
P-nitrophenol(PNP) adsorption in batch and fixed bed adsorbers was studied. The homogeneous surface diffusion model(HSDM) based on external mass transfer and intraparticle surface diffusion was used to describe th... P-nitrophenol(PNP) adsorption in batch and fixed bed adsorbers was studied. The homogeneous surface diffusion model(HSDM) based on external mass transfer and intraparticle surface diffusion was used to describe the adsorption kinetics for PNP in stirred batch adsorber at various initial concentrations and activated carbon dosages. The fixed bed model considering both external and internal mass transfer resistances as well as axial dispersion with non-linear isotherm was utilized to predict the fixed bed breakthrough curves for PNP adsorption under the conditions of different flow rates and inlet concentrations. The equilibrium parameters and surface diffusivity(Ds) were obtained from separate experiments in batch adsorber. The obtained value of Ds is 4.187×1012 m2/s. The external film mass transfer coefficient(kf) and axial dispersion coefficient(DL) were estimated by the correlations of Goeuret and Wike-Chang. The Biot number determined by HSDM indicated that the adsorption rate of PNP onto activated carbon in stirred batch was controlled by intraparticle diffusion and film mass transfer. A sensitivity analysis was carried out and showed that the fixed bed model calculations were sensitive to Ds and kf, but insensitive to DL. The sensitivity analysis and Biot number both confirm that intraparticle diffusion and film mass transfer are the controlling mass transfer mechanism in fixed bed adsorption system. 展开更多
关键词 adsorption activated carbon modeling fixed bed adsorber simulation
下载PDF
Mass transfer mechanisms in fixed-bed adsorption of erythromycin 被引量:2
2
作者 Ying SUN Jiawen ZHU +2 位作者 Kui CHEN Sheng ZHU Jie XU 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2008年第4期353-360,共8页
The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performa... The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performance was investigated in a fixed-bed system with respect to the adsorption superficial velocity,ionic strength and pH.A mathematical model was used to simulate the mass transfer mechanism,taking film mass transfer,pore diffusion and axial dispersion into account.The model predictions were consistent with the experi-mental data and were consequently used to determine the mass transfer coefficients. 展开更多
关键词 fixed-bed adsorption superficial velocity ionic strength erythromycin However investigations on the parameters governing the performance of this technology are still scarce.In the present work a polymeric and porous resin Sepabeads SP825 resin was used for its higher adsorption efficiency compared with the resins reported.The equilib-rium capacity of Sepabeads SP825 for EM in a batch system was established using a Langmuir isotherm.The effects of superficial velocity ionic strength and pH on the adsorption process were determined from the results of fixed bed experiments.And a model of the purification process was used to simulate the mass transfer mechanism which has taken film mass transfer pore diffusion and axial dispersion into account.The experimental adsorp-tion measurements were compared to the results calcu-lated from the model.The completion of these studies provide some essential parameters which are required in order to design a successful purification process and better understand the fundamentals of these process.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部