This paper proposes an environment-aware best- retransmission count selected optimization control scheme over IEEE 802.11 multi-hop wireless networks. The proposed scheme predicts the wireless resources by using stati...This paper proposes an environment-aware best- retransmission count selected optimization control scheme over IEEE 802.11 multi-hop wireless networks. The proposed scheme predicts the wireless resources by using statistical channel state and provides maximum retransmission count optimization based on wireless channel environment state to improve the packet delivery success ratio. The media access control (MAC) layer selects the best-retransmission count by perceiving the types of packet loss in wireless link and using the wireless channel charac- teristics and environment information, and adjusts the packet for- warding adaptively aiming at improving the packet retransmission probability. Simulation results show that the best-retransmission count selected scheme achieves a higher packet successful delivery percentage and a lower packet collision probability than the corresponding traditional MAC transmission control protocols.展开更多
The successful rate of transmission coordination of opportunistic routing (OK) is analyzea systematically, and then two efficient transmission coordination mechanisms (TCMs) are proposed for OR: a batch sliding w...The successful rate of transmission coordination of opportunistic routing (OK) is analyzea systematically, and then two efficient transmission coordination mechanisms (TCMs) are proposed for OR: a batch sliding window-based TCM and a bit map-based TCM, to reduce the total number of packet transmissions and improve end-to-end throughput for OR. The batch sliding window-based TCM avoids the oscillation of the successful rate of transmission coordination by transmitting packets in continuous batch mode so as to improve the average successful rate of transmission coordination efficiently, while the bit map-based TCM improves end-to-end throughput of OR by reducing the overhead of transmission coordination. Exhaustive simulations show that the average end-to-end throughput gains of the two proposed TCMs are 15.4% and 6.4% over the batch map-based TCM, respectively.展开更多
Wireless sensor networks (WSN) provide an approachto collecting distributed monitoring data and transmiting them tothe sink node. This paper proposes a WSN-based multi-hop networkinfrastructure, to increase network ...Wireless sensor networks (WSN) provide an approachto collecting distributed monitoring data and transmiting them tothe sink node. This paper proposes a WSN-based multi-hop networkinfrastructure, to increase network lifetime by optimizing therouting strategy. First, a network model is established, an operatingcontrol strategy is devised, and energy consumption characteristicsare analyzed. Second, a fast route-planning algorithm isproposed to obtain the original path that takes into account the remainingenergy of communicating nodes and the amount of energyconsumed in data transmission. Next, considering the amount ofenergy consumed by an individual node and the entire network,a criterion function is established to describe node performanceand to evaluate data transmission ability. Finally, a route optimizingalgorithm is proposed to increase network lifetime by adjusting thetransmission route in protection of the weak node (the node withlow transmission ability). Simulation and comparison experimentalresults demonstrate the good performance of the proposed algorithmsto increase network lifetime.展开更多
Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined contro...Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined controller coefficient.Furthermore,fixed power sharing control also suffers from an inability to identify power availability at a rectification station.There is a need for a controller that ensures an efficient power sharing among the MT-HVDC terminals,prevents the possibility of overloading,and utilizes the available power sharing.A new adaptive wireless control for active power sharing among multiterminal(MT-HVDC)systems,including power availability and power management policy,is proposed in this paper.The proposed control strategy solves these issues and,this proposed controller strategy is a generic method that can be applied for unlimited number of converter stations.The rational of this proposed controller is to increase the system reliability by avoiding the necessity of fast communication links.The test system in this paper consists of four converter stations based on three phase-two AC voltage levels.The proposed control strategy for a multiterminal HVDC system is conducted in the power systems computer aided design/electromagnetic transient design and control(PSCAD/EMTDC)simulation environment.The simulation results significantly show the flexibility and usefulness of the proposed power sharing control provided by the new adaptive wireless method.展开更多
Designing a multi-constrained QoS (Quality of service) communication protocol for mission-critical applications that seeks a path connecting source node and destination node that satisfies multiple QoS constrains such...Designing a multi-constrained QoS (Quality of service) communication protocol for mission-critical applications that seeks a path connecting source node and destination node that satisfies multiple QoS constrains such as energy cost, delay, and reliability imposes a great challenge in Wireless Sensor Networks (WSNs). In such challenging dynamic environment, traditional routing and layered infrastructure are inefficient and sometimes even infeasible. In recent research works, the opportunistic routing paradigm which delays the forwarding decision until reception of packets in forwarders by utilizing the broadcast nature of the wireless medium has been exploited to overcome the limitations of traditional routing. However, to guarantee the balance between the energy, delay and reliability requires the refinement of opportunistic routing through interaction between underlying layers known as cross-layer opportunistic routing. Indeed, these schemes fail to achieve optimal performance and hence require a new method to facilitate the adoption of the routing protocol to the dynamic challenging environments. In this paper, we propose a universal cross-layered opportunistic based communication protocol for WSNs for guaranteeing the user set constraints on multi-constrained QoS in low-duty-cycle WSN. Extensive simulation results show that the proposed work, Multi-Constrained QoS Opportunistic routing by optimal Power Tuning (MOR-PT) effectively achieves the feasible QoS trade-off constraints set by user by jointly considering the power control and selection diversity over established algorithms like DSF [1] and DTPC [2].展开更多
基金supported by the National Basic Research Program of China(2013CB329005)the National Natural Science Foundation of China(61101105+9 种基金6120116261302100)the Basic Research Program of Jiangsu Province(BK2011027BK2012434)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(12KJB51002212KJB510020)the Postdoctoral Science Foundation of China(2013M531391)the State Grid Project(52090F135015)the Scientific Research Foundation for Nanjing University of Posts and Telecommunications(NY211006NY211007)
文摘This paper proposes an environment-aware best- retransmission count selected optimization control scheme over IEEE 802.11 multi-hop wireless networks. The proposed scheme predicts the wireless resources by using statistical channel state and provides maximum retransmission count optimization based on wireless channel environment state to improve the packet delivery success ratio. The media access control (MAC) layer selects the best-retransmission count by perceiving the types of packet loss in wireless link and using the wireless channel charac- teristics and environment information, and adjusts the packet for- warding adaptively aiming at improving the packet retransmission probability. Simulation results show that the best-retransmission count selected scheme achieves a higher packet successful delivery percentage and a lower packet collision probability than the corresponding traditional MAC transmission control protocols.
文摘The successful rate of transmission coordination of opportunistic routing (OK) is analyzea systematically, and then two efficient transmission coordination mechanisms (TCMs) are proposed for OR: a batch sliding window-based TCM and a bit map-based TCM, to reduce the total number of packet transmissions and improve end-to-end throughput for OR. The batch sliding window-based TCM avoids the oscillation of the successful rate of transmission coordination by transmitting packets in continuous batch mode so as to improve the average successful rate of transmission coordination efficiently, while the bit map-based TCM improves end-to-end throughput of OR by reducing the overhead of transmission coordination. Exhaustive simulations show that the average end-to-end throughput gains of the two proposed TCMs are 15.4% and 6.4% over the batch map-based TCM, respectively.
基金supported by the National Natural Science Foundation of China(61571068)the Innovative Research Projects of Colleges and Universities in Chongqing(12A19369)
文摘Wireless sensor networks (WSN) provide an approachto collecting distributed monitoring data and transmiting them tothe sink node. This paper proposes a WSN-based multi-hop networkinfrastructure, to increase network lifetime by optimizing therouting strategy. First, a network model is established, an operatingcontrol strategy is devised, and energy consumption characteristicsare analyzed. Second, a fast route-planning algorithm isproposed to obtain the original path that takes into account the remainingenergy of communicating nodes and the amount of energyconsumed in data transmission. Next, considering the amount ofenergy consumed by an individual node and the entire network,a criterion function is established to describe node performanceand to evaluate data transmission ability. Finally, a route optimizingalgorithm is proposed to increase network lifetime by adjusting thetransmission route in protection of the weak node (the node withlow transmission ability). Simulation and comparison experimentalresults demonstrate the good performance of the proposed algorithmsto increase network lifetime.
文摘Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined controller coefficient.Furthermore,fixed power sharing control also suffers from an inability to identify power availability at a rectification station.There is a need for a controller that ensures an efficient power sharing among the MT-HVDC terminals,prevents the possibility of overloading,and utilizes the available power sharing.A new adaptive wireless control for active power sharing among multiterminal(MT-HVDC)systems,including power availability and power management policy,is proposed in this paper.The proposed control strategy solves these issues and,this proposed controller strategy is a generic method that can be applied for unlimited number of converter stations.The rational of this proposed controller is to increase the system reliability by avoiding the necessity of fast communication links.The test system in this paper consists of four converter stations based on three phase-two AC voltage levels.The proposed control strategy for a multiterminal HVDC system is conducted in the power systems computer aided design/electromagnetic transient design and control(PSCAD/EMTDC)simulation environment.The simulation results significantly show the flexibility and usefulness of the proposed power sharing control provided by the new adaptive wireless method.
文摘Designing a multi-constrained QoS (Quality of service) communication protocol for mission-critical applications that seeks a path connecting source node and destination node that satisfies multiple QoS constrains such as energy cost, delay, and reliability imposes a great challenge in Wireless Sensor Networks (WSNs). In such challenging dynamic environment, traditional routing and layered infrastructure are inefficient and sometimes even infeasible. In recent research works, the opportunistic routing paradigm which delays the forwarding decision until reception of packets in forwarders by utilizing the broadcast nature of the wireless medium has been exploited to overcome the limitations of traditional routing. However, to guarantee the balance between the energy, delay and reliability requires the refinement of opportunistic routing through interaction between underlying layers known as cross-layer opportunistic routing. Indeed, these schemes fail to achieve optimal performance and hence require a new method to facilitate the adoption of the routing protocol to the dynamic challenging environments. In this paper, we propose a universal cross-layered opportunistic based communication protocol for WSNs for guaranteeing the user set constraints on multi-constrained QoS in low-duty-cycle WSN. Extensive simulation results show that the proposed work, Multi-Constrained QoS Opportunistic routing by optimal Power Tuning (MOR-PT) effectively achieves the feasible QoS trade-off constraints set by user by jointly considering the power control and selection diversity over established algorithms like DSF [1] and DTPC [2].