In this paper, a new concept of double coupled fixed point for multi-valued mixed increasing operators is given and some new double coupled fixed point theorems for multi-valued mixed increasing operators in ordered B...In this paper, a new concept of double coupled fixed point for multi-valued mixed increasing operators is given and some new double coupled fixed point theorems for multi-valued mixed increasing operators in ordered Banach spaces are also given. These results extend and generalize some results of Huang and Fang.展开更多
In this paper, based on a basic result on condensing mappings satisfying the interior condition, some new fixed point theorems of the condensing mappings of this kind are obtained. As a result, the famous Altman's th...In this paper, based on a basic result on condensing mappings satisfying the interior condition, some new fixed point theorems of the condensing mappings of this kind are obtained. As a result, the famous Altman's theorem, Roth's theorem and Petryshyn's theorem are extended to condensing mappings satisfying the interior condition.展开更多
The minimal-maximal fixed points theorems of increasing operators are proved in ordered space and some well-known results of increasing operators and monotone operators are improved and generalized. The obtained resul...The minimal-maximal fixed points theorems of increasing operators are proved in ordered space and some well-known results of increasing operators and monotone operators are improved and generalized. The obtained results are then applied to singular nonlinear boundary problem in ordinary differential equation without any assumption of continuity, compactness, convexity and concavity.展开更多
In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theore...In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theorems for the generalized g- quasi-contractions with the spectral radius r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈[0,1) in the setting of cone b-metric spaces over Banach al- gebras, where the coefficient s satisfies s ≥ 1. The main results generalize, extend and unify several well-known comparable results in the literature.展开更多
Some common fixed point results for mappings satisfying a quasi-contractive condition which involves altering distance functions are obtained in partially ordered complete cone metric spaces. A sufficient condition fo...Some common fixed point results for mappings satisfying a quasi-contractive condition which involves altering distance functions are obtained in partially ordered complete cone metric spaces. A sufficient condition for the uniqueness of common fixed point is proved. Also, an example is given to support our results.展开更多
The purpose of this paper is to present a new iterative scheme for finding a common solution of the generalized mixed equilibrium problems with an infinite family of inverse strongly monotone mappings and the fixed po...The purpose of this paper is to present a new iterative scheme for finding a common solution of the generalized mixed equilibrium problems with an infinite family of inverse strongly monotone mappings and the fixed point problems of demimetric mappings under nonlinear transformations in Banach spaces. Applications are also included. The results in this paper are the extension and improvement of the recent results in the literature.展开更多
The existence of common fixed points for a pair of Lipschitzian mappings in Banach spaces is proved. By using this result, some common fixed point theorems are also established for these mappings in Hilbert spaces, in...The existence of common fixed points for a pair of Lipschitzian mappings in Banach spaces is proved. By using this result, some common fixed point theorems are also established for these mappings in Hilbert spaces, in L p spaces, in Hardy spaces H p, and in Sobolev spaces H r,p , for 1<p<+∞ and r≥0.展开更多
S. Hu and Y. Sun[1] defined the fixed point index for weakly inward mappings, investigated its properties and studied fixed points for such mappings. In this paper, following S. Hu and Y. Sun, we further investigate b...S. Hu and Y. Sun[1] defined the fixed point index for weakly inward mappings, investigated its properties and studied fixed points for such mappings. In this paper, following S. Hu and Y. Sun, we further investigate boundary conditions, under which the fixed point index for i(A, Ω, p) is equal to nonzero, where i(A, Ω, p) is the completely continuous and weakly inward mapping. Correspondingly, we can obtain many new fixed point theorems of the completely continuous and weakly inward mapping, which generalize some famous theorems such as Rothe's theorem, Altman's theorem, Petryshyn's theorem etc. in the case of weakly inward mappings. In addition, our conclusions extend the famous fixed point theorem of cone expansion and compression to the case of weakly inward mappings. Moreover, the main results contain and generalize the corresponding results in the recent work[2].展开更多
In the present paper we introduce a random iteration scheme for three random operators defined on a closed and convex subset of a uniformly convex Banach space and prove its convergence to a common fixed point of thre...In the present paper we introduce a random iteration scheme for three random operators defined on a closed and convex subset of a uniformly convex Banach space and prove its convergence to a common fixed point of three random operators. The result is also an extension of a known theorem in the corresponding non-random case.展开更多
We introduce the concept of generalized quasi-contraction mappings in G-partial metric spaces and prove some fixed point results in ordered G-partial metric spaces. The results generalize and extend some recent result...We introduce the concept of generalized quasi-contraction mappings in G-partial metric spaces and prove some fixed point results in ordered G-partial metric spaces. The results generalize and extend some recent results in literature.展开更多
In this paper,we obtain some tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces.We consider the obtained assertions without the assump...In this paper,we obtain some tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces.We consider the obtained assertions without the assumption of normality of cones.The presented results generalize some coupled common fixed point theorems in the existing literature.展开更多
In this paper, we establish the existence and uniqueness of fixed points of operator , when n is an arbitrary positive integer and X is a partially ordered complete metric space. We have shown examples to verify our w...In this paper, we establish the existence and uniqueness of fixed points of operator , when n is an arbitrary positive integer and X is a partially ordered complete metric space. We have shown examples to verify our work. Our results generalize the recent fixed point theorems cited in [1]-[4] etc. and include several recent developments.展开更多
In this paper, we propose a new perspective to discuss the N-order fixed point theory of set-valued and single-valued mappings. There are two aspects in our work: we first define a product metric space with a graph fo...In this paper, we propose a new perspective to discuss the N-order fixed point theory of set-valued and single-valued mappings. There are two aspects in our work: we first define a product metric space with a graph for the single-valued mapping whose conversion makes the results and proofs concise and straightforward, and then we propose an <em>SG</em>-contraction definition for set-valued mapping which is more general than some recent contraction’s definition. The results obtained in this paper extend and unify some recent results of other authors. Our method to discuss the N-order fixed point unifies <em>N</em>-order fixed point theory of set-valued and single-valued mappings.展开更多
The goal of the present paper is to investigate some new HUR-stability results by applying the alternative fixed point of generalized quartic functional equationin β-Banach modules on Banach algebras. The concept of ...The goal of the present paper is to investigate some new HUR-stability results by applying the alternative fixed point of generalized quartic functional equationin β-Banach modules on Banach algebras. The concept of Ulam-Hyers-Rassias stability (briefly, HUR-stability) originated from Th. M. Rassias stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.展开更多
In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich a...In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich and Chatterjea nonexpansive mappings in a Banach space using the Krasnoselskii-Ishikawa iteration method associated withSλand consider some applications of our results to prove the existence of solutions for nonlinear integral and nonlinear fractional differential equations.We also establish certain interesting examples to illustrate the usability of our results.展开更多
In the paper quasi_weak convergence is introduced in ordered Banach space and it is weaker than weak convergence. Besed on it, the fixed point existence theorem of increasing operator is proved without the suppose of ...In the paper quasi_weak convergence is introduced in ordered Banach space and it is weaker than weak convergence. Besed on it, the fixed point existence theorem of increasing operator is proved without the suppose of continuity and compactness in the sense of norm and weak compactness and is applied to the Hammerstein nonlinear intergal equation.展开更多
The purpose of this paper is to improve some famous theorems for contractive mapping from ρ(α + β) ∈ [0,1/s) to ρ(α + β) ∈ [0, 1) in ordered cone b-metric spaces over Banach algebras with coefficient s ≥ 1(ρ...The purpose of this paper is to improve some famous theorems for contractive mapping from ρ(α + β) ∈ [0,1/s) to ρ(α + β) ∈ [0, 1) in ordered cone b-metric spaces over Banach algebras with coefficient s ≥ 1(ρ(x) is the spectral radius of the generalized Lipschitz constant x). Moreover, some similar improvements in ordered cone b-metric spaces are also obtained, which from α + β∈ [0,1/s) to α + β∈ [0, 1). Some examples are given to support that our new results are genuine improvements and generalizations.展开更多
基金Funded by the Natural Science Foundation of China (No. 10171070)
文摘In this paper, a new concept of double coupled fixed point for multi-valued mixed increasing operators is given and some new double coupled fixed point theorems for multi-valued mixed increasing operators in ordered Banach spaces are also given. These results extend and generalize some results of Huang and Fang.
基金Supported in part by the Foundation of Education Ministry, Anhui Province, China (No: KJ2008A028)Educa-tion Ministry, Hubei Province, China (No: D20072202)
文摘In this paper, based on a basic result on condensing mappings satisfying the interior condition, some new fixed point theorems of the condensing mappings of this kind are obtained. As a result, the famous Altman's theorem, Roth's theorem and Petryshyn's theorem are extended to condensing mappings satisfying the interior condition.
文摘The minimal-maximal fixed points theorems of increasing operators are proved in ordered space and some well-known results of increasing operators and monotone operators are improved and generalized. The obtained results are then applied to singular nonlinear boundary problem in ordinary differential equation without any assumption of continuity, compactness, convexity and concavity.
基金supported by the National Natural Science Foundation of China(No.11361064)the project No.174024 of the Ministry of Education,Science and Technological Department of the Republic of Serbia
文摘In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theorems for the generalized g- quasi-contractions with the spectral radius r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈[0,1) in the setting of cone b-metric spaces over Banach al- gebras, where the coefficient s satisfies s ≥ 1. The main results generalize, extend and unify several well-known comparable results in the literature.
基金Supported by the National Natural Science Foundation of China(11271293)
文摘Some common fixed point results for mappings satisfying a quasi-contractive condition which involves altering distance functions are obtained in partially ordered complete cone metric spaces. A sufficient condition for the uniqueness of common fixed point is proved. Also, an example is given to support our results.
文摘The purpose of this paper is to present a new iterative scheme for finding a common solution of the generalized mixed equilibrium problems with an infinite family of inverse strongly monotone mappings and the fixed point problems of demimetric mappings under nonlinear transformations in Banach spaces. Applications are also included. The results in this paper are the extension and improvement of the recent results in the literature.
文摘The existence of common fixed points for a pair of Lipschitzian mappings in Banach spaces is proved. By using this result, some common fixed point theorems are also established for these mappings in Hilbert spaces, in L p spaces, in Hardy spaces H p, and in Sobolev spaces H r,p , for 1<p<+∞ and r≥0.
基金Supported in part by the Foundations of Education Ministry, Anhui Province, China (No: KJ2008A028)Education Ministry, Hubei Province, China (No: D20102502)
文摘S. Hu and Y. Sun[1] defined the fixed point index for weakly inward mappings, investigated its properties and studied fixed points for such mappings. In this paper, following S. Hu and Y. Sun, we further investigate boundary conditions, under which the fixed point index for i(A, Ω, p) is equal to nonzero, where i(A, Ω, p) is the completely continuous and weakly inward mapping. Correspondingly, we can obtain many new fixed point theorems of the completely continuous and weakly inward mapping, which generalize some famous theorems such as Rothe's theorem, Altman's theorem, Petryshyn's theorem etc. in the case of weakly inward mappings. In addition, our conclusions extend the famous fixed point theorem of cone expansion and compression to the case of weakly inward mappings. Moreover, the main results contain and generalize the corresponding results in the recent work[2].
文摘In the present paper we introduce a random iteration scheme for three random operators defined on a closed and convex subset of a uniformly convex Banach space and prove its convergence to a common fixed point of three random operators. The result is also an extension of a known theorem in the corresponding non-random case.
文摘We introduce the concept of generalized quasi-contraction mappings in G-partial metric spaces and prove some fixed point results in ordered G-partial metric spaces. The results generalize and extend some recent results in literature.
基金supported by the Foundation of Education Ministry,Hubei Province,China(Q20122203)
文摘In this paper,we obtain some tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces.We consider the obtained assertions without the assumption of normality of cones.The presented results generalize some coupled common fixed point theorems in the existing literature.
文摘In this paper, we establish the existence and uniqueness of fixed points of operator , when n is an arbitrary positive integer and X is a partially ordered complete metric space. We have shown examples to verify our work. Our results generalize the recent fixed point theorems cited in [1]-[4] etc. and include several recent developments.
文摘In this paper, we propose a new perspective to discuss the N-order fixed point theory of set-valued and single-valued mappings. There are two aspects in our work: we first define a product metric space with a graph for the single-valued mapping whose conversion makes the results and proofs concise and straightforward, and then we propose an <em>SG</em>-contraction definition for set-valued mapping which is more general than some recent contraction’s definition. The results obtained in this paper extend and unify some recent results of other authors. Our method to discuss the N-order fixed point unifies <em>N</em>-order fixed point theory of set-valued and single-valued mappings.
文摘The goal of the present paper is to investigate some new HUR-stability results by applying the alternative fixed point of generalized quartic functional equationin β-Banach modules on Banach algebras. The concept of Ulam-Hyers-Rassias stability (briefly, HUR-stability) originated from Th. M. Rassias stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
文摘In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich and Chatterjea nonexpansive mappings in a Banach space using the Krasnoselskii-Ishikawa iteration method associated withSλand consider some applications of our results to prove the existence of solutions for nonlinear integral and nonlinear fractional differential equations.We also establish certain interesting examples to illustrate the usability of our results.
文摘In the paper quasi_weak convergence is introduced in ordered Banach space and it is weaker than weak convergence. Besed on it, the fixed point existence theorem of increasing operator is proved without the suppose of continuity and compactness in the sense of norm and weak compactness and is applied to the Hammerstein nonlinear intergal equation.
基金Supported by Yunnan Applied Basic Research Projects(2016FD082)Guiding project of Scientific Research Fund of Yunnan Provincial Education Department(2016ZDX151)
文摘The purpose of this paper is to improve some famous theorems for contractive mapping from ρ(α + β) ∈ [0,1/s) to ρ(α + β) ∈ [0, 1) in ordered cone b-metric spaces over Banach algebras with coefficient s ≥ 1(ρ(x) is the spectral radius of the generalized Lipschitz constant x). Moreover, some similar improvements in ordered cone b-metric spaces are also obtained, which from α + β∈ [0,1/s) to α + β∈ [0, 1). Some examples are given to support that our new results are genuine improvements and generalizations.