期刊文献+
共找到3,594篇文章
< 1 2 180 >
每页显示 20 50 100
Effect of the Particle Packing Configuration on Fixed Bed Performance
1
作者 Li Ziqi Bao Di +1 位作者 Zhou Han Tang Xiaojin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期152-160,共9页
Fixed-bed reactors are generally considered the optimal choice for numerous multi-phase catalytic reactions due to their excellent performance and stability.However,conventional fixed beds often encounter challenges r... Fixed-bed reactors are generally considered the optimal choice for numerous multi-phase catalytic reactions due to their excellent performance and stability.However,conventional fixed beds often encounter challenges related to inadequate mass transfer and a high pressure drop caused by the non-uniform void fraction distribution.To enhance the overall performance of fixed beds,the impact of different packing configurations on performance was investigated.Experimental and simulation methods were used to investigate the fluid flow and mass transfer performances of various packed beds under different flow rates.It was found that structured beds exhibited a significantly lower pressure drop per unit length than conventional packed beds.Furthermore,the packing configurations had a critical role in improving the overall performance of fixed beds.Specifically,structured packed beds,particularly the H-2 packing configuration,effectively reduced the pressure drop per unit length and improved the mass transfer efficiency.The H-2 packing configuration consisted of two parallel strips of particles in each layer,with strips arranged perpendicularly between adjacent layers,and the spacing between the strips varied from layer to layer. 展开更多
关键词 packing configurations fixed bed Computational Fluid Dynamics simulation pressure drop mass transfer
下载PDF
Simultaneous Adsorption of Aqueous Pb2+, Cu2+, Zn2+, and Cd2+ Using Surfactant-Modified and Unmodified Activated Carbon in a Fixed Bed Column
2
作者 Morufu A. Olatunji Kamoru A. Salam Abdullahi M. Evuti 《Journal of Encapsulation and Adsorption Sciences》 2024年第1期1-24,共24页
The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activat... The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activated carbon made from coconut shells. The activated carbons were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy-energy dispersive x-ray (SEM-EDX). The adsorption column dynamics were studied by varying the flow rates (5, 10 and 15 mL/min), bed heights (10, 15 and 20 cm), and initial concentrations (50, 150, and 250 mg/L). The activated carbon has a pore volume of 0.715 cm3/g and a BET-specific surface area of 1410 m2/g. Sodium dodecyl sulfate (SDS) surfactant incorporation onto the surface of the activated carbon enhances its capacity for simultaneous adsorption of Pb2+, Cu2+, Zn2+, and Cd2+ from the aqueous medium. The affinity of the heavy metals to both unmodified (AC) and modified (AC-SDS) activated carbons followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The dynamic adsorption of the column depends on the flow rate, bed height, initial metal concentration, and SDS surface modification. With a 5 mL/min flow rate, a 20 cm bed height, and a 50 mg/L initial metal concentration, a maximum break-through time of 150 minutes for the unmodified activated carbon (AC) and 180 minutes for the SDS-modified activated carbon (AC-SDS) was reached. 展开更多
关键词 ADSORPTION Surfactant-Modified Activated Carbon MULTICOMPONENT Breakthrough Adsorption Capacity fixed bed Column
下载PDF
Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor:Experimental and kinetic studies
3
作者 Junyang Liu Luming Wang +3 位作者 Yuhang Bian Chunshan Li Zengxi Li Jie Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期1-10,共10页
The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with t... The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with the molar ratio of reactants from 0.8 to 1.4 under certain pressure.The measurement data were regression with the pseudo-homogeneous(P-H),Eley-Rideal(E-R),and Langmuir-Hinshelwood(L-H)heterogeneous kinetic models.Independent adsorption experiments were implemented to gain the adsorption equilibrium constants of four components.Among the above three models,the L-H model exhibited the best fitting results.The stability of NKC-9 was evaluated by long-term running with the yield of methyl methacrylate no decrease during 3000 h operation.The structure and physicochemical properties of the new and used catalyst were performed by several characterizations including thermogravimetric analysis(TG),scanning electron microscope(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR)and so on. 展开更多
关键词 Kinetics ESTERIFICATION Methyl methacrylate Cation-exchange resin fix bed reactor
下载PDF
Adsorption dynamics of ethane from air in structured fixed beds with different microfibrous composites
4
作者 Huan Xiang Huiping Zhang +1 位作者 Pengfei Liu Ying Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期14-24,共11页
Adsorption dynamics of ethane in two granular fixed beds and structured fixed beds with microfibrous composites was studied.5A zeolite membrane 5A/PSSF(paper-like sintered stainless steel fiber)and microfibrous entrap... Adsorption dynamics of ethane in two granular fixed beds and structured fixed beds with microfibrous composites was studied.5A zeolite membrane 5A/PSSF(paper-like sintered stainless steel fiber)and microfibrous entrapped activated carbon(MEAC)composites were prepared by wet layup papermaking/sintering technique and in-situ hydrothermal method.Microfibrous composites were characterized by X-ray diffraction,scanning electron microscopy and N2 adsorption/desorption.Structured fixed beds were designed by filling granular adsorbents(5A zeolite or activated carbon)and microfibrous composites at the inlet and outlet of the beds,respectively.Effects of flow rate,bed height and structure on the breakthrough curves were investigated.The length of unused bed(LUB)was determined,and Yoon–Nelson model was used to fit the breakthrough curves.The experimental results showed ethane was effectively adsorbed on the granular adsorbents and microfibrous composites.Both composites could decrease the LUB values and enhance bed utilization.All breakthrough curves fitted well to Yoon–Nelson model,with correlation coefficient exceeding 0.89.The adsorption rate of ethane could be improved in the structured fixed beds,which showed an enhanced mass transfer efficiency for ethane adsorption.LUB values of structured fixed beds with 5A/PSSF composites were larger,the bed utilization values were lower,and the adsorption rate constants were higher than those with MEAC composites under the same conditions. 展开更多
关键词 5A zeolite membrane Microfibrous entrapped activated carbon ETHANE Structured fixed bed Adsorption dynamics
下载PDF
Oxidative coupling of methane in a fixed bed reactor over perovskite catalyst:A simulation study using experimental kinetic model 被引量:8
5
作者 Nakisa Yaghobi Mir Hamid Reza Ghoreishy 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第1期8-16,共9页
The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separat... The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separate energy equations for the gas and solid phases coupled with an experimental kinetic model. A lumped kinetic model containing four main species CH4, O2, COx (CO2, CO), and C2 (C2H4 and C2H6) was used with a plug flow reactor model as well. The results from the model agreed with the experimental data. The model was used to analyze the influence of temperature and feed gas composition on the conversion and selectivity of the reactor performance. The analytical results indicate that the conversion decreases, whereas, C2 selectivity increases by increasing gas hourly space velocity (GHSV) and the methane conversion also decreases by increasing the methane to oxygen ratio. 展开更多
关键词 oxidative coupling of methane SIMULATION KINETICS fixed bed catalytic reactor ETHYLENE
下载PDF
Comparative study of fluidized-bed and fixed-bed reactor for syngas methanation over Ni-W/TiO_2-SiO_2 catalyst 被引量:7
6
作者 Bo Liu Shengfu Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第5期740-746,共7页
In this work,syngas methanation over Ni-W/TiO2-SiO2catalyst was studied in a fluidized-bed reactor(FBR)and its performance was compared with a fixed-bed reactor(FIXBR).The effects of main operating variables including... In this work,syngas methanation over Ni-W/TiO2-SiO2catalyst was studied in a fluidized-bed reactor(FBR)and its performance was compared with a fixed-bed reactor(FIXBR).The effects of main operating variables including feedstock gases space velocity,coke content,bed temperature and sulfur-tolerant stability of 100 h life were investigated.The structure of the catalysts was characterized by XRD,N2adsorptiondesorption and TEM.It is found that under same space velocity from 5000 h 1to 25000 h 1FBR gave a higher CH4yield,lower coke content,and lower bed temperature than those obtained in FIXBR.Ni-W/TiO2-SiO2catalyst possessed excellent sulfur-tolerant stability on the feedstock gases less than 500 ppm H2S in FBR.The carbon deposits formed on the spent catalyst were in the form of carbon fibers in FBR,while in the form of dense accumulation distribution appearance in FIXBR. 展开更多
关键词 SYNGAS METHANATION Ni-W/TiO2-SiO2catalyst fluidized bed fixed bed
下载PDF
Production of single-walled carbon nanotubes from methane over Co-Mo/MgO nanocatalyst:A comparative study of fixed and fluidized bed reactors 被引量:4
7
作者 Alimorad Rashidi Roghayeh Lotfi +1 位作者 Ehsaneh Fakhrmosavi Masoud Zare 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第4期372-376,共5页
In this study,the performances of fixed and fluidized bed reactors in the production of single-walled carbon nanotubes(SWNTs)have been investigated.In both reactors,single-walled carbon nanotubes were grown by catal... In this study,the performances of fixed and fluidized bed reactors in the production of single-walled carbon nanotubes(SWNTs)have been investigated.In both reactors,single-walled carbon nanotubes were grown by catalytic chemical vapor decomposition(CCVD)of methane over Co-Mo/MgO nanocatalyst under two different operating conditions.The synthesized samples were characterized by TEM,TGA and Raman spectroscopy.It is found that the performance of a fluidized bed in the synthesis of carbon nanotubes is much better than that of a fixed bed.The quality of carbon nanotubes obtained from the fluidized bed was significantly higher than that from the fixed bed and the former one with the ID/IG ratio of 0.11 while the latter one with the ID/IG ratio of 0.71.Also,the yield of SWNTs in the fluidized bed was 92 wt%,while it was 78 wt%in the fixed bed.These advantages of fluidized bed reactors for the synthesis of carbon nanotubes can be attributed to more available space for the growth of carbon nanotubes and more uniform temperature and concentration profiles. 展开更多
关键词 single-walled carbon nanotubes chemical vapor deposition fixed bed reactor fluidized bed reactor
下载PDF
Kinetic Model of Fixed Bed Reactor with Immobilized Microorganisms for Removing Low-Concentration SO_2 被引量:3
8
作者 Bing Huang YanyanWang +1 位作者 Shiling Zhang Yong Ao 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第1期86-91,共6页
On the basis of the analysis of the process of treating low concentrations of sulfur dioxide (SO2) gas in a fixed bed reactor, a kinetic model is proposed for this process after taking into consideration the effects... On the basis of the analysis of the process of treating low concentrations of sulfur dioxide (SO2) gas in a fixed bed reactor, a kinetic model is proposed for this process after taking into consideration the effects of internal diffusion, cell concentration, and production yield of microorganisms but ignoring the effect of external diffusion. The results obtained from the model simulation show that this model can indicate the influence of the process factors, Cin, η μmax, Cx, A, h, Kin, and Q, on the removal of SO2 and that the prediction of the results by this model is also satisfactory. This kinetic model can also provide some very important indications regarding the preparation of immobilized microorganisms, selection and domestication of proper species of microorganisms, as well as the design of bioreactors. 展开更多
关键词 fixed bed reactor kinetic model immobilized microorganisms REMOVAL sulfur dioxide
下载PDF
Modeling of Isobutane/Butene Alkylation Using Solid Acid Catalysts in a Fixed Bed Reactor 被引量:3
9
作者 Liu Zheng Tang Xiaojin +1 位作者 Hu Lifeng Hou Shuandi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第2期63-69,共7页
A dynamic mass transfer model of isobutane/butene alkylation over solid acid catalysts in a fixed bed reactor was established. In the model, a modified equation for the relationship between point activity and effectiv... A dynamic mass transfer model of isobutane/butene alkylation over solid acid catalysts in a fixed bed reactor was established. In the model, a modified equation for the relationship between point activity and effective diffusion coefficient was proposed. It is found that the simulation results fit the experimental data well and the breakthrough time of the bed layer is predicted accurately. By modeling the alkylation process, the time-space distribution of butene and point activity profiles of catalysts can be obtained. Furthermore, the reasons for the deactivation of solid acid catalysts were investigated. It indicates that the main reason for the deactivation of catalysts is the site coverage near the inlet of the reactor, while it is ascribed to the steric effect in the region far away from the inlet. 展开更多
关键词 mass transfer model isobutane/butene ALKYLATION fixed bed reactor DEACTIVATION INTERNAL DIFFUSION
下载PDF
Improved Generalized Predictive Control Algorithm with Offline and Online Identification and Its Application to Fixed Bed Reactor 被引量:4
10
作者 余世明 王海清 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第1期49-54,共6页
An improved generalized predictive control algorithm is presented in thispaper by incorporating offline identification into online identification. Unlike the existinggeneralized predictive control algorithms, the prop... An improved generalized predictive control algorithm is presented in thispaper by incorporating offline identification into online identification. Unlike the existinggeneralized predictive control algorithms, the proposed approach divides parameters of a predictivemodel into the time invariant and time-varying ones, which are treated respectively by offline andonline identification algorithms. Therefore, both the reliability and accuracy of the predictivemodel are improved. Two simulation examples of control of a fixed bed reactor show that this newalgorithm is not only reliable and stable in the case of uncertainties and abnormal disturbances,but also adaptable to slow time varying processes. 展开更多
关键词 generalized predictive control offline identification onlineidentification fixed bed reactor
下载PDF
Numerical simulation of fixed bed reactor for oxidative coupling of methane over monolithic catalyst 被引量:1
11
作者 张照 郭紫琪 季生福 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第10期1627-1633,共7页
A three-dimensional geometric model was set up for the oxidative coupling of methane(OCM) fixed bed reactor loaded with Na_3PO_4-Mn/SiO_2/cordierite monolithic catalyst,and an improved Stansch kinetic model was establ... A three-dimensional geometric model was set up for the oxidative coupling of methane(OCM) fixed bed reactor loaded with Na_3PO_4-Mn/SiO_2/cordierite monolithic catalyst,and an improved Stansch kinetic model was established to calculate the OCM reactions using the computational fluid dynamics method and Fluent software.The simulation conditions were completely the same with the experimental conditions that the volume velocity of the reactant is 80 ml·min^(-1) under standard state,the CH_4/O_2 ratio is 3 and the temperature and pressure is800 ℃ and 1 atm,respectively.The contour of the characteristic parameters in the catalyst bed was analyzed,such as the species mass fractions,temperature,the heat flux on side wall surface,pressure,fluid density and velocity.The results showed that the calculated values matched well with the experimental values on the conversion of CH4 and the selectivity of products(C_2H_6,C_2H_4,CO,CO_2 and H_2) in the reactor outlet with an error range of±4%.The mass fractions of CH_4 and O_2 decreased from 0.600 and 0.400 at the catalyst bed inlet to 0.445 and0.120 at the outlet,where the mass fractions of C_2H_6,C_2H_4,CO and CO_2 were 0.0245,0.0460,0.0537 and 0.116,respectively.Due to the existence of laminar boundary layer,the mass fraction contours of each species bent upwards in the vicinity of the boundary layer.The volume of OCM reaction was changing with the proceeding of reaction,and the total moles of products were greater than reactants.The flow field in the catalyst bed maintained constant temperature and pressure.The fluid density decreased gradually from 2.28 kg·m^(-3) at the inlet of the catalyst bed to 2.18 kg·m^(-3) at the outlet of the catalyst bed,while the average velocity magnitude increased from 0.108 m·s-1 to 0.120 m·s^(-1). 展开更多
关键词 Numerical simulation fixed bed reactor Computational fluid dynamics Oxidative coupling of methane Monolithic catalyst
下载PDF
Effect of Particle Shape on Catalyst Deactivation during 2-Butene and Isobutane Alkylation of Liquid Phase in Fixed-Bed Reactor Using Particle-Resolved CFD Simulation 被引量:2
12
作者 Zhang Sizhen Zhu Zhenxing +1 位作者 Xin Feng Chu Menghan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第4期139-150,共12页
How catalyst shape affects its deactivation is a crucial issue for quickly decaying catalysts such as zeolite in 2-butene and isobutane alkylation.In this work,steady simulations are used to determine the temperature ... How catalyst shape affects its deactivation is a crucial issue for quickly decaying catalysts such as zeolite in 2-butene and isobutane alkylation.In this work,steady simulations are used to determine the temperature and species distribution in fixed beds filled with particles of four shapes.Subsequently,unsteady simulations are used to study the deactivation behavior of the catalysts based on the steady simulation results.We describe the deactivation rate and type of catalyst deactivation by defining a local internal diffusivity,which is affected by catalytic activity.The results reveal that the internal diffusion distance of the catalyst determines the deactivation rate,whereas the local internal diffusivity determines its deactivation type. 展开更多
关键词 ALKYLATION catalyst deactivation particle shape fixed bed particle-resolved CFD
下载PDF
Conversion enhancement of tubular fixed-bed reactor for Fischer-Tropsch synthesis using static mixer 被引量:2
13
作者 Phavanee Narataruksa Sabaithip Tungkamani +6 位作者 Karn Pana-Suppamassadu Phongsak Keeratiwintakorn Siriluck Nivitchanyong Piyapong Hunpinyo Hussanai Sukkathanyawat Prayut Jiamrittiwong Visarut Nopparat 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第4期435-444,共10页
Recently, Fischer-Tropsch synthesis (FTS) has become an interesting technology because of its potential role in producing biofuels via Biomass- to-Liquids (BTL) processes. In Fischer-Tropsch (FT) section, biomas... Recently, Fischer-Tropsch synthesis (FTS) has become an interesting technology because of its potential role in producing biofuels via Biomass- to-Liquids (BTL) processes. In Fischer-Tropsch (FT) section, biomass-derived syngas, mainly composed of a mixture of carbon monoxide (CO) and hydrogen (H2), is converted into various forms of hydrocarbon products over a catalyst at specified temperature and pressure. Fixed-bed reactors are typically used for these processes as conventional FT reactors. The fixed-bed or packed-bed type reactor has its drawbacks, which are heat transfer limitation, i.e. a hot spot problem involved highly exothermic characteristics of FT reaction, and mass transfer limitation due to the condensation of liquid hydrocarbon products occurred on catalyst surface. This work is initiated to develop a new chemical reactor design in which a better distribution of gaseous reactants and hydrocarbon products could be achieved, and led to higher throughput and conversion. The main goal of the research is the enhancement of a fixed-bed reactor, focusing on the application of KenicsTM static mixer insertion in the tubular packed-bed reactor. Two FTS experiments were carried out using two reactors i.e., with and without static mixer insertion within catalytic beds. The modeled syngas used was a mixed gas composed of H2/CO in 2 : 1 molar ratio that was fed at the rate of 30 mL(STP)·min^- 1 (GHSV ≈ 136 mL·gcat^-1 ·h^-1) into the fixed Ru supported aluminum catalyst bed of weight 13.3 g. The reaction was carried out at 180 ℃ and atmospheric pressure continuously for 36 h for both experiments. Both transient and steady-state conversions (in terms of time on stream) were reported. The results revealed that the steady-state CO conversion for the case using the static mixer was approximately 3.5 times higher than that of the case without static mixer. In both cases, the values of chain growth probability of hydrocarbon products (α) for Fischer-Tropsch synthesis were 0.92 and 0.89 for the case with and without static mixer, respectively. 展开更多
关键词 Fischer-Tropsch synthesis fixed-bed reactor packed-bed reactor static mixer
下载PDF
Scale up and stability test for oxidative coupling of methane over Na_2WO_4-Mn/SiO_2 catalyst in a 200 ml fixed-bed reactor 被引量:3
14
作者 Haitao Liu Xiaolai Wang +3 位作者 Dexin Yang Runxiong Gao Zhonglai Wang Jian Yang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第1期59-63,共5页
The study of scale up for the oxidative coupling of methane (OCM) has been carried out in a 200 ml stainless steel fixed-bed reactor over a 5wt% Na2WO4-1.9wt% Mn/SiO2 (W-Mn/SiO2) catalyst. The effects of reaction ... The study of scale up for the oxidative coupling of methane (OCM) has been carried out in a 200 ml stainless steel fixed-bed reactor over a 5wt% Na2WO4-1.9wt% Mn/SiO2 (W-Mn/SiO2) catalyst. The effects of reaction conditions were investigated in detail. The results showed that, with increasing reaction temperature, the gas-phase reaction was enhanced and a significant amount of methane was converted into COx; with the CH4/O2 molar ratio of 5, the highest C2 (ethylene and ethane) yield of 25% was achieved; the presence of steam (as diluent) had a positive effect on the C2 selectivity and yield. Under lower methane gaseous hourly space velocity (GHSV), higher selectivity and yield of C2 were obtained as the result of the decrease of released heat energy. In 100 h reaction time, the C2 selectivity of 66%-61% and C2 yield of 24.2%-25.4% were achieved by a single pass without any significant loss in catalytic performance. 展开更多
关键词 scale up oxidative coupling of methane W-Mn/SiO2 200 ml fixed-bed reactor
下载PDF
A three dimensional CFD simulation and optimization of direct DME synthesis in a fixed bed reactor 被引量:2
15
作者 Fazel Moradi Mohammad Kazemeini Moslem Fattahi 《Petroleum Science》 SCIE CAS CSCD 2014年第2期323-330,共8页
In this study, a comprehensive three-dimensional dynamic model was developed for simulating the flow behavior and catalytic coupling reactions for direct synthesis of dimethyl ether (DME) from syngas including CO2 i... In this study, a comprehensive three-dimensional dynamic model was developed for simulating the flow behavior and catalytic coupling reactions for direct synthesis of dimethyl ether (DME) from syngas including CO2 in a fixed bed reactor at commercial scale under both adiabatic and isothermal conditions. For this purpose, a computational fluid dynamic (CFD) simulation was carried out through which the standard κ-ε model with 10% turbulence tolerations was implemented. At first, an adiabatic fixed bed reactor was simulated and the obtained results were compared with those of an equivalent commercial slurry reactor. Then the concentration and temperature profiles along the reactor were predicted. Consequently, the optimum temperature, pressure, hydrogen to carbon monoxide ratio in the feedstock and the reactor height under different operation conditions were determined. Finally, the results obtained from this three-dimensional dynamic model under appropriate industrial boundary conditions were compared with those of others available in literature to verify the model. Next, through changing the boundary conditions, the simulation was performed for an isothermal fixed bed reactor. Furthermore, it was revealed that, under isothermal conditions, the performed equilibrium simulations were done for a single phase system. Considering the simultaneous effects of temperature and pressure, the optimum operation conditions for the isothermal and adiabatic fixed bed reactors were investigated. The results of the H2+CO conversions indicated that, under isothermal condition, higher conversion could be achieved, in compared with that under adiabatic conditions. Then, the effects of various operating parameters, including the pressure and temperature, of the reactor on the DME production were examined. Ultimately, the CFD modeling results generated in the present work showed reasonable agreement with previously obtained data available in the literature. 展开更多
关键词 MODELING CFD dimethyl ether synthesis dynamic behavior fixed-bed reactor isothermaland adiabatic conditions
下载PDF
Suppressing secondary reactions of coal pyrolysis by reducing pressure and mounting internals in fixed-bed reactor 被引量:7
16
作者 Shuai Cheng Dengguo Lai +5 位作者 Zhen Shi Leisheng Hong Jianling Zhang Xi Zeng Shiqiu Gao Guangwen Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第4期507-515,共9页
Pyrolysis of Shenmu coal was performed in fixed-bed reactors indirectly heated by reducing operating pressure and mounting internals in the reactor to explore their synergetic effects on coal pyrolysis. Mounting inter... Pyrolysis of Shenmu coal was performed in fixed-bed reactors indirectly heated by reducing operating pressure and mounting internals in the reactor to explore their synergetic effects on coal pyrolysis. Mounting internals particularly designed greatly improved the heat transfer inside coal bed and raised the yield of tar production.Reducing pressure further facilitated the production of tar through its suppression of secondary reactions occurring in the reactor. The absolute increase in tar yield reached 3.33 wt% in comparison with the pyrolysis in the reactor without internals under atmospheric pressure. The obtained tar yield in the reactor with internals under reduced pressure was even higher than the yield of Gray–King assay. Through experiments in a laboratory fixed bed reactor, it was also clarified that the effect of reducing pressure is related to volatile release rate in pyrolysis. It did not obviously vary tar yield at pyrolysis temperatures below 600 ℃, while the effect was evident at 650 and 700 ℃ but became limited again above 800 ℃. Under reduced pressure the produced tar contained more aliphatics and phenols but less aromatics. 展开更多
关键词 pyrolysis absolute volatile phenols suppression evident clarified contained heating bottle
下载PDF
PARAMETRIC SENSITIVITY IN FIXED BED REACTOR WITH CO-CURRENT COOLING
17
作者 吴鹏 李绍芬 廖晖 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1996年第3期34-41,共8页
This criterion is based on the occurrence of an extremum of hot spot parameters with respect to any of the input parameters of the reactor. The critical operation trajectory, the critical isoconcentration curve and th... This criterion is based on the occurrence of an extremum of hot spot parameters with respect to any of the input parameters of the reactor. The critical operation trajectory, the critical isoconcentration curve and the supercritical operation trajectory are defined. Applying the relationship between the hot spot of the critical operation trajectory and the inflection point of the supercritical, an approximate expression of the critical inlet conditions is derived. The computed results show that the influence of the cooling medium on the parametric sensitivity region is related to the heat capacity ratio α. And the greater α is, the more sensitive the reaction systems would be. 展开更多
关键词 fixed bed reactor PARAMETRIC sensitivity RUNAWAY
下载PDF
EXPERIMENTAL INVESTIGATION OF KINETIC AND TRANSPORT PARAMETERS IN A WALL-COOLED FIXED-BED REACTOR
18
作者 Zhen-Min CHENG and Wei-Kang YUAN(UNILAB Research Center of Chemical Reaction Engineering, East China University of science and Technology, 200237, Shanghai) 《高校化学工程学报》 EI CAS CSCD 1994年第S1期33-36,共4页
EXPERIMENTALINVESTIGATIONOFKINETICANDTRANSPORTPARAMETERSINAWALL-COOLEDFIXED-BEDREACTORZhen-MinCHENGandWei-Ka... EXPERIMENTALINVESTIGATIONOFKINETICANDTRANSPORTPARAMETERSINAWALL-COOLEDFIXED-BEDREACTORZhen-MinCHENGandWei-KangYUAN(UNILABRese... 展开更多
关键词 fixed -bed reactor PARAMETER estimation reactor design.
下载PDF
Photodegradation of Methylene Blue in a Batch Fixed Bed Photoreactor Using Activated Carbon Fibers Supported TiO2 Photocatalyst 被引量:1
19
作者 傅平丰 赵卓 +1 位作者 彭鹏 戴学刚 《过程工程学报》 EI CAS CSCD 北大核心 2008年第1期65-71,共7页
A batch fixed bed photoreactor,using felt-form activated carbon fibers(ACF)supported TiO2 photocatalyst(TiO2/ACF),was developed to carry out photocatalytic degradation of methylene blue(MB)solution.The effects of TiO2... A batch fixed bed photoreactor,using felt-form activated carbon fibers(ACF)supported TiO2 photocatalyst(TiO2/ACF),was developed to carry out photocatalytic degradation of methylene blue(MB)solution.The effects of TiO2 particle size,loaded TiO2 amount,initial MB concentration,airflow rate and successive run on the decomposition rate were investigated.The results showed that photodegradation process followed a pseudo-first-order reaction kinetic law.The apparent first-order reaction constant kapp was larger than 0.047 min- 1 with half reaction time t1/2 shorter than 15 min,which was comparable to reported data using suspended Degussa P-25 TiO2 particles.The high degradation rate was mainly attributed to adsorption of MB molecules onto the surface of TiO2/ACF.The photocatalytic efficiency still remained nearly 90%after 12 successive runs,showing that successive usage of the designed photoreactor was possible.The synergic enhancement effect in combination of adsorption with ACF and photodegradation with TiO2 was proved by comparing MB removal rates in the successive degradation and adsorption runs,respectively. 展开更多
关键词 光降解作用 亚甲蓝 固定床 活性碳纤维 二氧化钛光催化剂
下载PDF
Conversion of Non-a-Tocopherols to a-Tocopherol in a Fixed Bed Reactor
20
作者 陈明 吴彩娟 +2 位作者 任其龙 杨亦文 黄梅 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第4期561-565,共5页
Since a-tocopherol has special biological and nutritional activities, it is important to convert non-a-tocopherols to a-tocopherol. This paper focuses on the effects of residence time, pressure, temperature and the ma... Since a-tocopherol has special biological and nutritional activities, it is important to convert non-a-tocopherols to a-tocopherol. This paper focuses on the effects of residence time, pressure, temperature and the mass ratio of formaldehyde to tocopherols on the content of a-tocopherol, the conversion of non-a-tocopherols, the selectivity and yield of a-tocopherol in a fixed-bed reactor. The reactor is made from φ12 (I.D.)×360mm stainless steel pipe. It is packed with a mixture of 5% Pd/C and cation exchange resin catalysts. Preliminary results indicated the suitable operation conditions are pressure 5.0 MPa, temperature 180℃, and mass ratio of formaldehyde to tocopherols 2.0. A product of more than 50% a-tocopherol content has been obtained by using 88.85% mixed tocopherols as raw material. 展开更多
关键词 TOCOPHEROL fixed bed reactor CONVERSION
下载PDF
上一页 1 2 180 下一页 到第
使用帮助 返回顶部