Critical states in disordered systems,fascinating and subtle eigenstates,have attracted a lot of research interests.However,the nature of critical states is difficult to describe quantitatively,and in general,it canno...Critical states in disordered systems,fascinating and subtle eigenstates,have attracted a lot of research interests.However,the nature of critical states is difficult to describe quantitatively,and in general,it cannot predict a system that hosts the critical state.We propose an explicit criterion whereby the Lyapunov exponent of the critical state should be 0 simultaneously in dual spaces,namely the Lyapunov exponent remains invariant under the Fourier transform.With this criterion,we can exactly predict a one-dimensional quasiperiodic model which is not of self-duality,but hosts a large number of critical states.Then,we perform numerical verification of the theoretical prediction and display the self-similarity of the critical state.Due to computational complexity,calculations are not performed for higher dimensional models.However,since the description of extended and localized states by the Lyapunov exponent is universal and dimensionless,utilizing the Lyapunov exponent of dual spaces to describe critical states should also be universal.Finally,we conjecture that some kind of connection exists between the invariance of the Lyapunov exponent and conformal invariance,which can promote the research of critical phenomena.展开更多
In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The eff...In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent(NLLE)and signal-to-noise ratio methods using a coupled Lorenz model.The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings,therefore,it can quantify the predictability limit induced by the external forcings.On this basis,a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields.The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method.This similarity supports ENSO as the major predictable signal for weather and climate prediction.In addition,a ratio of predictability limit(RPL)calculated by the CNLLE method to that calculated by the NLLE method was proposed.The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit.For instance,ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months,as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean.Moreover,the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.展开更多
Wiener amalgam spaces are a class of function spaces where the function’s local and global behavior can be easily distinguished. These spaces are ex-tensively used in Harmonic analysis that originated in the work of ...Wiener amalgam spaces are a class of function spaces where the function’s local and global behavior can be easily distinguished. These spaces are ex-tensively used in Harmonic analysis that originated in the work of Wiener. In this paper: we first introduce a two-variable exponent amalgam space (L<sup>q</sup><sup>()</sup>,l<sup>p</sup><sup>()</sup>)(Ω). Secondly, we investigate some basic properties of these spaces, and finally, we study their dual.展开更多
In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with ...In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with 0∈?Ωand all the principle curvatures of?Ωat 0 are negative,a∈C1(Ω,R*+),μ>0,0<s<2,1<q<2 and N>2(q+1)/(q-1).By2*:=2N/(N-2)and 2*(s):(2(N-s))/(N-2)we denote the critical Sobolev exponent and Hardy-Sobolev exponent,respectively.展开更多
In this paper,we consider the following Kirchhoff-Schrodinger-Poisson system:{−(a+b∫_(R^(3))|∇u|^(2))△u+u+ϕu=μQ(x)|u|^(q-2)u+K(x)|u|^(4)u,in R^(3),−△ϕ=u^(2) the nonlinear growth of|u|^(4)u reaches the Sobolev crit...In this paper,we consider the following Kirchhoff-Schrodinger-Poisson system:{−(a+b∫_(R^(3))|∇u|^(2))△u+u+ϕu=μQ(x)|u|^(q-2)u+K(x)|u|^(4)u,in R^(3),−△ϕ=u^(2) the nonlinear growth of|u|^(4)u reaches the Sobolev critical exponent.By combining the variational method with the concentration-compactness principle of Lions,we establish the existence of a positive solution and a positive radial solution to this problem under some suitable conditions.The nonlinear term includes the nonlinearity f(u)~|u|^(q-2)u for the well-studied case q∈[4,6),and the less-studied case q∈(2,3),we adopt two different strategies to handle these cases.Our result improves and extends some related works in the literature.展开更多
We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critica...We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved.To demonstrate the validity of this mapping,we apply it to two non-Hermitian localization models:an Aubry-Andre-like model with nonreciprocal hopping and complex quasiperiodic potentials,and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping.We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models.This general mapping may catalyze further studies on mobility edges,Lyapunov exponents,and other significant quantities pertaining to localization in non-Hermitian mosaic models.展开更多
Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of ...Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids.展开更多
Seismic attributes have been widely used in oil and gas exploration and development. However, owing to the complexity of seismic wave propagation in subsurface media, the limitations of the seismic data acquisition sy...Seismic attributes have been widely used in oil and gas exploration and development. However, owing to the complexity of seismic wave propagation in subsurface media, the limitations of the seismic data acquisition system, and noise interference, seismic attributes for seismic data interpretation have uncertainties. Especially, the antinoise ability of seismic attributes directly affects the reliability of seismic interpretations. Gray system theory is used in time series to minimize data randomness and increase data regularity. Detrended fluctuation analysis (DFA) can effectively reduce extrinsic data tendencies. In this study, by combining gray system theory and DFA, we propose a new method called gray detrended fluctuation analysis (GDFA) for calculating the fractal scaling exponent. We consider nonlinear time series generated by the Weierstrass function and add random noise to actual seismic data. Moreover, we discuss the antinoise ability of the fractal scaling exponent based on GDFA. The results suggest that the fractal scaling exponent calculated using the proposed method has good antinoise ability. We apply the proposed method to 3D poststack migration seismic data from southern China and compare fractal scaling exponents calculated using DFA and GDFA. The results suggest that the use of the GDFA-calculated fractal scaling exponent as a seismic attribute can match the known distribution of sedimentary facies.展开更多
The variational cumulant expansion developed in recent years has been extended to treat the Ising model in statistical physics.In this paper,a detailed calculation of the critical temperature T c (L) and criti...The variational cumulant expansion developed in recent years has been extended to treat the Ising model in statistical physics.In this paper,a detailed calculation of the critical temperature T c (L) and critical exponent β(L) for the magnetic film of L layers are presented by means of the variational cumulant expansion.For L >1,the results of our theoretical calculations are in approximate coincidence with the experimental ones made before,and for the special case of L =1 (2 D),the results of the calculation are identical to the data from other reports.展开更多
In this paper,we consider a singular elliptic system with both concave non-linearities and critical Sobolev-Hardy growth terms in bounded domains.By means of variational methods,the multiplicity of positive solutions ...In this paper,we consider a singular elliptic system with both concave non-linearities and critical Sobolev-Hardy growth terms in bounded domains.By means of variational methods,the multiplicity of positive solutions to this problem is obtained.展开更多
For an n-dimensional chaotic system, we extend the definition of the nonlinear local Lyapunov exponent (NLLE) from one- to n-dimensional spectra, and present a method for computing the NLLE spectrum. The method is t...For an n-dimensional chaotic system, we extend the definition of the nonlinear local Lyapunov exponent (NLLE) from one- to n-dimensional spectra, and present a method for computing the NLLE spectrum. The method is tested on three chaotic systems with different complexity. The results indicate that the NLLE spectrum realistically characterizes the growth rates of initial error vectors along different directions from the linear to nonlinear phases of error growth. This represents an improvement over the traditional Lyapunov exponent spectrum, which only characterizes the error growth rates during the linear phase of error growth. In addition, because the NLLE spectrum can effectively separate the slowly and rapidly growing perturbations, it is shown to be more suitable for estimating the predictability of chaotic systems, as compared to the traditional Lyapunov exponent spectrum.展开更多
Boundedness of multilinear singular integrals and their commutators from products of variable exponent Lebesgue spaces to variable exponent Lebesgue spaces are obtained. The vector-valued case is also considered.
Multiphase flows are ubiquitous in our daily life and engineering applications. It is important to investigate the flow structures to predict their dynamical behaviors ef- fectively. Lagrangian coherent structures (...Multiphase flows are ubiquitous in our daily life and engineering applications. It is important to investigate the flow structures to predict their dynamical behaviors ef- fectively. Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) is utilized in this study to elucidate the multiphase interactions in gaseous jets injected into water and time-dependent turbu- lent cavitation under the framework of Navier-Stokes flow computations. For the gaseous jets injected into water, the highlighted phenomena of the jet transportation can be observed by the LCS method, including expansion, bulge, necking/breaking, and back-attack. Besides, the observation of the LCS reveals that the back-attack phenomenon arises from the fact that the injected gas has difficulties to move toward downstream re- gion after the necking/breaking. For the turbulent cavitating flow, the ridge of the FTLE field can form a LCS to capture the front and boundary of the re-entraint jet when the ad- verse pressure gradient is strong enough. It represents a bar- rier between particles trapped inside the circulation region and those moving downstream. The results indicate that the FFLE field has the potential to identify the structures of mul- tiphase flows, and the LCS can capture the interface/barrier or the vortex/circulation region.展开更多
For the following elliptic problem {-△u-μu/|x|^2=|u|^2^*(s)-2u/|x|^s+h(x), on R^N u∈D^1,2(R^N), N≥3, 0≤μ〈μ^-=(N-2)^2/4, 0≤s〈2, where 2^*(s)=2(N-s)/N-2 is the critical Sobolev-Hardy expon...For the following elliptic problem {-△u-μu/|x|^2=|u|^2^*(s)-2u/|x|^s+h(x), on R^N u∈D^1,2(R^N), N≥3, 0≤μ〈μ^-=(N-2)^2/4, 0≤s〈2, where 2^*(s)=2(N-s)/N-2 is the critical Sobolev-Hardy exponent, h(x) ∈ (D^1,2(R^N))^*, the dual space of (D^1,2(R^N)), with h(x)≥(≠)0. By Ekeland's variational principle, subsuper solutions and a Mountain Pass theorem, the authors prove that the above problem has at least two distinct solutions if ||h||*〈CN,sAs^N-s/4-2s(1-μ/μ)^1/2, CN,s=4-2s/N-2(N-2/N+2-2s)^N+2-2s/4-2s and As = inf u∈D^1,2(R^N)/{0}∫R^N(|△↓u|^2-μu^2/|x|^2)dx/(∫R^N|u|^2^*(s)/|x|^sdx)^2/2^*(s).展开更多
In this article, we study the quasilinear elliptic problem involving critical Hardy Sobolev exponents and Hardy terms. By variational methods and analytic techniques, we obtain the existence of sign-changing solutions...In this article, we study the quasilinear elliptic problem involving critical Hardy Sobolev exponents and Hardy terms. By variational methods and analytic techniques, we obtain the existence of sign-changing solutions to the problem.展开更多
In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequal...In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequality.展开更多
Using the properties of chaos synchronization, the method for estimating the largest Lyapunov exponent in a multibody system with dry friction is presented in this paper. The Lagrange equations with multipliers of the...Using the properties of chaos synchronization, the method for estimating the largest Lyapunov exponent in a multibody system with dry friction is presented in this paper. The Lagrange equations with multipliers of the systems are given in matrix form, which is adequate for numerical calculation. The approach for calculating the generalized velocity and acceleration of the slider is given to determine slipping or sticking of the slider in the systems. For slip-slip and stick-slip multibody systems, their largest Lyapunov exponents are calculated to characterize their dynamics.展开更多
In this paper, we study the existence of multiple solutions for the following nonlinear elliptic problem of p&q-Laplacian type involving the critical Sobolev exponent:{-△pu-△qu=│u│^p*-2u+μ│u│^r-2u in Ω u...In this paper, we study the existence of multiple solutions for the following nonlinear elliptic problem of p&q-Laplacian type involving the critical Sobolev exponent:{-△pu-△qu=│u│^p*-2u+μ│u│^r-2u in Ω u│δΩ=0,where Ω belong to R^N is a bounded domain,N〉p,p^*=Np/N-p is the critical Sobolev exponent and μ 〉0. We prove that if 1 〈 r 〈 q 〈 p 〈 N, then there is a μ0 〉 0, such that for any μ∈ (0, μ0), the above mentioned problem possesses infinitely many weak solutions. Our result generalizes a similar result in [8] for p-Laplacian type problem.展开更多
A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in stat...A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in state space. After recon- structing state space from one-dimensional chaotic time series, neighboring multiple-state vectors of the predicting point are selected to deduce the prediction formula by using the definition of the locaI Lyapunov exponent. Numerical simulations are carded out to test its effectiveness and verify its higher precision over two older methods. The effects of the number of referential state vectors and added noise on forecasting accuracy are also studied numerically.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20200737)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY223109)+1 种基金the Innovation Research Project of Jiangsu Province(Grant No.JSSCBS20210521)the China Postdoctoral Science Foundation(Grant No.2022M721693)。
文摘Critical states in disordered systems,fascinating and subtle eigenstates,have attracted a lot of research interests.However,the nature of critical states is difficult to describe quantitatively,and in general,it cannot predict a system that hosts the critical state.We propose an explicit criterion whereby the Lyapunov exponent of the critical state should be 0 simultaneously in dual spaces,namely the Lyapunov exponent remains invariant under the Fourier transform.With this criterion,we can exactly predict a one-dimensional quasiperiodic model which is not of self-duality,but hosts a large number of critical states.Then,we perform numerical verification of the theoretical prediction and display the self-similarity of the critical state.Due to computational complexity,calculations are not performed for higher dimensional models.However,since the description of extended and localized states by the Lyapunov exponent is universal and dimensionless,utilizing the Lyapunov exponent of dual spaces to describe critical states should also be universal.Finally,we conjecture that some kind of connection exists between the invariance of the Lyapunov exponent and conformal invariance,which can promote the research of critical phenomena.
基金supported by the National Natural Science Foundation of China(Grant Nos.42225501 and 42105059)the National Key Scientific and Tech-nological Infrastructure project“Earth System Numerical Simula-tion Facility”(EarthLab).
文摘In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent(NLLE)and signal-to-noise ratio methods using a coupled Lorenz model.The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings,therefore,it can quantify the predictability limit induced by the external forcings.On this basis,a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields.The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method.This similarity supports ENSO as the major predictable signal for weather and climate prediction.In addition,a ratio of predictability limit(RPL)calculated by the CNLLE method to that calculated by the NLLE method was proposed.The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit.For instance,ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months,as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean.Moreover,the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.
文摘Wiener amalgam spaces are a class of function spaces where the function’s local and global behavior can be easily distinguished. These spaces are ex-tensively used in Harmonic analysis that originated in the work of Wiener. In this paper: we first introduce a two-variable exponent amalgam space (L<sup>q</sup><sup>()</sup>,l<sup>p</sup><sup>()</sup>)(Ω). Secondly, we investigate some basic properties of these spaces, and finally, we study their dual.
文摘In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with 0∈?Ωand all the principle curvatures of?Ωat 0 are negative,a∈C1(Ω,R*+),μ>0,0<s<2,1<q<2 and N>2(q+1)/(q-1).By2*:=2N/(N-2)and 2*(s):(2(N-s))/(N-2)we denote the critical Sobolev exponent and Hardy-Sobolev exponent,respectively.
基金Supported by NSFC(12171014,ZR2020MA005,ZR2021MA096)。
文摘In this paper,we consider the following Kirchhoff-Schrodinger-Poisson system:{−(a+b∫_(R^(3))|∇u|^(2))△u+u+ϕu=μQ(x)|u|^(q-2)u+K(x)|u|^(4)u,in R^(3),−△ϕ=u^(2) the nonlinear growth of|u|^(4)u reaches the Sobolev critical exponent.By combining the variational method with the concentration-compactness principle of Lions,we establish the existence of a positive solution and a positive radial solution to this problem under some suitable conditions.The nonlinear term includes the nonlinearity f(u)~|u|^(q-2)u for the well-studied case q∈[4,6),and the less-studied case q∈(2,3),we adopt two different strategies to handle these cases.Our result improves and extends some related works in the literature.
基金the National Natural Science Foundation of China(Grant No.12204406)the National Key Research and Development Program of China(Grant No.2022YFA1405304)the Guangdong Provincial Key Laboratory(Grant No.2020B1212060066)。
文摘We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved.To demonstrate the validity of this mapping,we apply it to two non-Hermitian localization models:an Aubry-Andre-like model with nonreciprocal hopping and complex quasiperiodic potentials,and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping.We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models.This general mapping may catalyze further studies on mobility edges,Lyapunov exponents,and other significant quantities pertaining to localization in non-Hermitian mosaic models.
文摘Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2012QNA62)the Natural Science Foundation of Jiangsu Province(Grant No.BK20130201)+1 种基金the Chinese Postdoctoral Science Foundation(Grant No.2014M551703)the National Natural Science Foundation of China(Grant No.41374140)
文摘Seismic attributes have been widely used in oil and gas exploration and development. However, owing to the complexity of seismic wave propagation in subsurface media, the limitations of the seismic data acquisition system, and noise interference, seismic attributes for seismic data interpretation have uncertainties. Especially, the antinoise ability of seismic attributes directly affects the reliability of seismic interpretations. Gray system theory is used in time series to minimize data randomness and increase data regularity. Detrended fluctuation analysis (DFA) can effectively reduce extrinsic data tendencies. In this study, by combining gray system theory and DFA, we propose a new method called gray detrended fluctuation analysis (GDFA) for calculating the fractal scaling exponent. We consider nonlinear time series generated by the Weierstrass function and add random noise to actual seismic data. Moreover, we discuss the antinoise ability of the fractal scaling exponent based on GDFA. The results suggest that the fractal scaling exponent calculated using the proposed method has good antinoise ability. We apply the proposed method to 3D poststack migration seismic data from southern China and compare fractal scaling exponents calculated using DFA and GDFA. The results suggest that the use of the GDFA-calculated fractal scaling exponent as a seismic attribute can match the known distribution of sedimentary facies.
文摘The variational cumulant expansion developed in recent years has been extended to treat the Ising model in statistical physics.In this paper,a detailed calculation of the critical temperature T c (L) and critical exponent β(L) for the magnetic film of L layers are presented by means of the variational cumulant expansion.For L >1,the results of our theoretical calculations are in approximate coincidence with the experimental ones made before,and for the special case of L =1 (2 D),the results of the calculation are identical to the data from other reports.
文摘In this paper,we consider a singular elliptic system with both concave non-linearities and critical Sobolev-Hardy growth terms in bounded domains.By means of variational methods,the multiplicity of positive solutions to this problem is obtained.
基金supported by the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 41522502)the National Program on Global Change and Air–Sea Interaction (Grant No. GASI-IPOVAI06)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAC03B07)
文摘For an n-dimensional chaotic system, we extend the definition of the nonlinear local Lyapunov exponent (NLLE) from one- to n-dimensional spectra, and present a method for computing the NLLE spectrum. The method is tested on three chaotic systems with different complexity. The results indicate that the NLLE spectrum realistically characterizes the growth rates of initial error vectors along different directions from the linear to nonlinear phases of error growth. This represents an improvement over the traditional Lyapunov exponent spectrum, which only characterizes the error growth rates during the linear phase of error growth. In addition, because the NLLE spectrum can effectively separate the slowly and rapidly growing perturbations, it is shown to be more suitable for estimating the predictability of chaotic systems, as compared to the traditional Lyapunov exponent spectrum.
基金supported by the Scientific Research Fund of Hunan Provincial Education Department (09A058)
文摘Boundedness of multilinear singular integrals and their commutators from products of variable exponent Lebesgue spaces to variable exponent Lebesgue spaces are obtained. The vector-valued case is also considered.
文摘Multiphase flows are ubiquitous in our daily life and engineering applications. It is important to investigate the flow structures to predict their dynamical behaviors ef- fectively. Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) is utilized in this study to elucidate the multiphase interactions in gaseous jets injected into water and time-dependent turbu- lent cavitation under the framework of Navier-Stokes flow computations. For the gaseous jets injected into water, the highlighted phenomena of the jet transportation can be observed by the LCS method, including expansion, bulge, necking/breaking, and back-attack. Besides, the observation of the LCS reveals that the back-attack phenomenon arises from the fact that the injected gas has difficulties to move toward downstream re- gion after the necking/breaking. For the turbulent cavitating flow, the ridge of the FTLE field can form a LCS to capture the front and boundary of the re-entraint jet when the ad- verse pressure gradient is strong enough. It represents a bar- rier between particles trapped inside the circulation region and those moving downstream. The results indicate that the FFLE field has the potential to identify the structures of mul- tiphase flows, and the LCS can capture the interface/barrier or the vortex/circulation region.
文摘For the following elliptic problem {-△u-μu/|x|^2=|u|^2^*(s)-2u/|x|^s+h(x), on R^N u∈D^1,2(R^N), N≥3, 0≤μ〈μ^-=(N-2)^2/4, 0≤s〈2, where 2^*(s)=2(N-s)/N-2 is the critical Sobolev-Hardy exponent, h(x) ∈ (D^1,2(R^N))^*, the dual space of (D^1,2(R^N)), with h(x)≥(≠)0. By Ekeland's variational principle, subsuper solutions and a Mountain Pass theorem, the authors prove that the above problem has at least two distinct solutions if ||h||*〈CN,sAs^N-s/4-2s(1-μ/μ)^1/2, CN,s=4-2s/N-2(N-2/N+2-2s)^N+2-2s/4-2s and As = inf u∈D^1,2(R^N)/{0}∫R^N(|△↓u|^2-μu^2/|x|^2)dx/(∫R^N|u|^2^*(s)/|x|^sdx)^2/2^*(s).
基金supported partly by the National Natural Science Foundation of China (10771219)
文摘In this article, we study the quasilinear elliptic problem involving critical Hardy Sobolev exponents and Hardy terms. By variational methods and analytic techniques, we obtain the existence of sign-changing solutions to the problem.
基金Supported by NSFC(10471047)NSF Guangdong Province(05300159).
文摘In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequality.
基金The project supported by the National Natural Science Foundation of China (10272008 and 10371030)The English text was polished by Yunming Chen
文摘Using the properties of chaos synchronization, the method for estimating the largest Lyapunov exponent in a multibody system with dry friction is presented in this paper. The Lagrange equations with multipliers of the systems are given in matrix form, which is adequate for numerical calculation. The approach for calculating the generalized velocity and acceleration of the slider is given to determine slipping or sticking of the slider in the systems. For slip-slip and stick-slip multibody systems, their largest Lyapunov exponents are calculated to characterize their dynamics.
基金Supported by NSFC (10571069 and 10631030) the Lap of Mathematical Sciences, CCNU, Hubei Province, China
文摘In this paper, we study the existence of multiple solutions for the following nonlinear elliptic problem of p&q-Laplacian type involving the critical Sobolev exponent:{-△pu-△qu=│u│^p*-2u+μ│u│^r-2u in Ω u│δΩ=0,where Ω belong to R^N is a bounded domain,N〉p,p^*=Np/N-p is the critical Sobolev exponent and μ 〉0. We prove that if 1 〈 r 〈 q 〈 p 〈 N, then there is a μ0 〉 0, such that for any μ∈ (0, μ0), the above mentioned problem possesses infinitely many weak solutions. Our result generalizes a similar result in [8] for p-Laplacian type problem.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61201452)
文摘A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in state space. After recon- structing state space from one-dimensional chaotic time series, neighboring multiple-state vectors of the predicting point are selected to deduce the prediction formula by using the definition of the locaI Lyapunov exponent. Numerical simulations are carded out to test its effectiveness and verify its higher precision over two older methods. The effects of the number of referential state vectors and added noise on forecasting accuracy are also studied numerically.