Manned combat aerial vehicles (MCAVs), and un-manned combat aerial vehicles (UCAVs) together form a cooper-ative engagement system to carry out operational mission, whichwill be a new air engagement style in the n...Manned combat aerial vehicles (MCAVs), and un-manned combat aerial vehicles (UCAVs) together form a cooper-ative engagement system to carry out operational mission, whichwill be a new air engagement style in the near future. On the basisof analyzing the structure of the MCAV/UCAV cooperative engage-ment system, this paper divides the unique system into three hi-erarchical levels, respectively, i.e., mission level, task-cluster leveland task level. To solve the formation and adjustment problem ofthe latter two levels, three corresponding mathematical modelsare established. To solve these models, three algorithms calledquantum artificial bee colony (QABC) algorithm, greedy strategy(GS) and two-stage greedy strategy (TSGS) are proposed. Finally,a series of simulation experiments are designed to verify the effec-tiveness and superiority of the proposed algorithms.展开更多
This paper presents a combined strategy to solve the trajectory online optimization problem for unmanned combat aerial vehicle (UCAV). Firstly, as trajectory directly optimizing is quite time costing, an online trajec...This paper presents a combined strategy to solve the trajectory online optimization problem for unmanned combat aerial vehicle (UCAV). Firstly, as trajectory directly optimizing is quite time costing, an online trajectory functional representation method is proposed. Considering the practical requirement of online trajectory, the 4-order polynomial function is used to represent the trajectory, and which can be determined by two independent parameters with the trajectory terminal conditions; thus, the trajectory online optimization problem is converted into the optimization of the two parameters, which largely lowers the complexity of the optimization problem. Furthermore, the scopes of the two parameters have been assessed into small ranges using the golden section ratio method. Secondly, a multi-population rotation strategy differential evolution approach (MPRDE) is designed to optimize the two parameters; in which, 'current-to-best/1/bin', 'current-to-rand/1/bin' and 'rand/2/bin' strategies with fixed parameter settings are designed, these strategies are rotationally used by three subpopulations. Thirdly, the rolling optimization method is applied to model the online trajectory optimization process. Finally, simulation results demonstrate the efficiency and real-time calculation capability of the designed combined strategy for UCAV trajectory online optimizing under dynamic and complicated environments.展开更多
Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCA...Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.展开更多
This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’...This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’actuator and sensor.The fixed-wing UAV swarm under consideration is organized as a“multi-leader-multi-follower”structure,in which only several leaders can obtain the dynamic target information while others only receive the neighbors’information through the communication network.To simultaneously realize the formation,containment,and dynamic target tracking,a two-layer control framework is adopted to decouple the problem into two subproblems:reference trajectory generation and trajectory tracking.In the upper layer,a distributed finite-time estimator(DFTE)is proposed to generate each UAV’s reference trajectory in accordance with the control objective.Subsequently,a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer,where a novel adaptive extended super-twisting(AESTW)algorithm with a finite-time extended state observer(FTESO)is involved in solving the robust trajectory tracking control problem under model uncertainties,actuator,and sensor faults.The proposed controller simultaneously guarantees rapidness and enhances the system’s robustness with fewer chattering effects.Finally,corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme.展开更多
This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-gu...This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.展开更多
To solve the problem of realizing autonomous aerial combat decision-making for unmanned combat aerial vehicles(UCAVs) rapidly and accurately in an uncertain environment, this paper proposes a decision-making method ba...To solve the problem of realizing autonomous aerial combat decision-making for unmanned combat aerial vehicles(UCAVs) rapidly and accurately in an uncertain environment, this paper proposes a decision-making method based on an improved deep reinforcement learning(DRL) algorithm: the multistep double deep Q-network(MS-DDQN) algorithm. First, a six-degree-of-freedom UCAV model based on an aircraft control system is established on a simulation platform, and the situation assessment functions of the UCAV and its target are established by considering their angles, altitudes, environments, missile attack performances, and UCAV performance. By controlling the flight path angle, roll angle, and flight velocity, 27 common basic actions are designed. On this basis, aiming to overcome the defects of traditional DRL in terms of training speed and convergence speed, the improved MS-DDQN method is introduced to incorporate the final return value into the previous steps. Finally, the pre-training learning model is used as the starting point for the second learning model to simulate the UCAV aerial combat decision-making process based on the basic training method, which helps to shorten the training time and improve the learning efficiency. The improved DRL algorithm significantly accelerates the training speed and estimates the target value more accurately during training, and it can be applied to aerial combat decision-making.展开更多
In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position beco...In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.展开更多
Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and h...Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.展开更多
Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation dur...Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation during beyond-visual-range(BVR)air combat.However,prior research on occupational decision-making in BVR air combat has mostly been limited to one-on-one scenarios.As such,this study presents a practical cooperative occupation decision-making methodology for use with multiple UCAVs.The weapon engagement zone(WEZ)and combat geometry were first used to develop an advantage function for situational assessment of one-on-one engagement.An encircling advantage function was then designed to represent the cooperation of UCAVs,thereby establishing a cooperative occupation model.The corresponding objective function was derived from the one-on-one engagement advantage function and the encircling advantage function.The resulting model exhibited similarities to a mixed-integer nonlinear programming(MINLP)problem.As such,an improved discrete particle swarm optimization(DPSO)algorithm was used to identify a solution.The occupation process was then converted into a formation switching task as part of the cooperative occupation model.A series of simulations were conducted to verify occupational solutions in varying situations,including two-on-two engagement.Simulated results showed these solutions varied with initial conditions and weighting coefficients.This occupation process,based on formation switching,effectively demonstrates the viability of the proposed technique.These cooperative occupation results could provide a theoretical framework for subsequent research in cooperative BVR air combat.展开更多
This paper focuses on the effects of external geometrical modifications on the aerodynamic characteristics of the MQ-1 predator Unmanned Combat Aerial Vehicle(UCAV)using computational fluid dynamics.The investigations...This paper focuses on the effects of external geometrical modifications on the aerodynamic characteristics of the MQ-1 predator Unmanned Combat Aerial Vehicle(UCAV)using computational fluid dynamics.The investigations are performed for 16 flight conditions at an altitude of7.6 km and at a constant speed of 56.32 m/s.Two models are analysed,namely the baseline model and the model with external geometrical modifications installed on it.Both the models are investigated for various angles of attack from-4°to 16°,angles of bank from 0°to 6°and angles of yaw from 0°to 4°.Due to the unavailability of any experimental(wind tunnel or flight test)data for this UCAV in the literature,a thorough verification of calculations process is presented to demonstrate confidence level in the numerical simulations.The analysis quantifies the loss of lift and increase in drag for the modified version of the MQ-1 predator UCAV along with the identification of stall conditions.Local improvement(in drag)of up to 96%has been obtained by relocating external modifications,whereas global drag force reduction of roughly 0.5%is observed.The effects of external geometrical modifications on the control surfaces indicate the blanking phenomenon and reduction in forces on the control surfaces that can reduce the aerodynamic performance of the UCAV.展开更多
There are fundamental performance compromises between rotary-wing and fixed-wing UAVs. The general solution to address this well-known problem is the design of a platform with some degree of reconfigurable airframes. ...There are fundamental performance compromises between rotary-wing and fixed-wing UAVs. The general solution to address this well-known problem is the design of a platform with some degree of reconfigurable airframes. For critical missions (civilian or military), it is imperative that mechanical complexity is kept to a minimum to help achieve mission success. This work proposes that the tried-and-true radio controlled (RC) aerobatic airplanes can be implemented as basis for fixed-wing UAVs having both speed and vertical takeoff and landing (VTOL) capabilities. These powerful and highly maneuverable airplanes have non-rotatable nacelles, yet capable of deep stall maneuvers. The power requirements for VTOL and level flight of an aerobatic RC airplane are evaluated and they are compared to those of a RC helicopter of similar flying weight. This work provides quantitative validation that commercially available RC aerobatic airplanes can serve as platform to build VTOL capable fixed-wing UAVs that are agile, cost effective, reliable and easy maintenance.展开更多
The nature and characteristics of attack unmanned combat aerial vehicle (UCAV) are analyzed. The principles of selecting takeoff thrust-weight ratio and takeoff weight of attack UCAV are presented by analyzing the s...The nature and characteristics of attack unmanned combat aerial vehicle (UCAV) are analyzed. The principles of selecting takeoff thrust-weight ratio and takeoff weight of attack UCAV are presented by analyzing the statistical data of weights for various main combat aircraft. The UCAV airborne weapons are analyzed, followed by the preliminary estimation of the payload weight. Various typical engines are analyzed and one of them is selected. Then the takeoff weight of the UCAV is determined. Based on some basic parameters and assumptions, the qualitative decomposition calculation for takeoff weight is completed. The key factors for obtaining longer endurance of aircraft with small aspect ratio configuration are found to be high lift-drag ratio and internal space. On the basis of the conclusions mentioned above, a highly blended flying-wing plus lifting body concept is proposed. According to this concept, the UCAV configuration is designed and optimized. Finally, the UCAV configuration with small aspect ratio, high lift-drag ratio, and high stealth characteristic is obtained.展开更多
The unmanned combat aerial vehicle(UCAV)is a research hot issue in the world,and the situation assessment is an important part of it.To overcome shortcomings of the existing situation assessment methods,such as low ac...The unmanned combat aerial vehicle(UCAV)is a research hot issue in the world,and the situation assessment is an important part of it.To overcome shortcomings of the existing situation assessment methods,such as low accuracy and strong dependence on prior knowledge,a datadriven situation assessment method is proposed.The clustering and classification are combined,the former is used to mine situational knowledge,and the latter is used to realize rapid assessment.Angle evaluation factor and distance evaluation factor are proposed to transform multi-dimensional air combat information into two-dimensional features.A convolution success-history based adaptive differential evolution with linear population size reduc-tion-means(C-LSHADE-Means)algorithm is proposed.The convolutional pooling layer is used to compress the size of data and preserve the distribution characteristics.The LSHADE algorithm is used to initialize the center of the mean clustering,which over-comes the defect of initialization sensitivity.Comparing experi-ment with the seven clustering algorithms is done on the UCI data set,through four clustering indexes,and it proves that the method proposed in this paper has better clustering performance.A situation assessment model based on stacked autoen-coder and learning vector quantization(SAE-LVQ)network is constructed,and it uses SAE to reconstruct air combat data fea-tures,and uses the self-competition layer of the LVQ to achieve efficient classification.Compared with the five kinds of assess-ments models,the SAE-LVQ model has the highest accuracy.Finally,three kinds of confrontation processes from air combat maneuvering instrumentation(ACMI)are selected,and the model in this paper is used for situation assessment.The assessment results are in line with the actual situation.展开更多
针对无人战斗机(unmanned combat air vehicle,UCAV)处于存在威胁区域的战场中路径规划问题,提出一种基于分组教与学算法的UCAV自适应路径规划方法。通过分析UCAV路径评价指标,提出一种自适应的UCAV路径评价模型,根据作战环境规划出距...针对无人战斗机(unmanned combat air vehicle,UCAV)处于存在威胁区域的战场中路径规划问题,提出一种基于分组教与学算法的UCAV自适应路径规划方法。通过分析UCAV路径评价指标,提出一种自适应的UCAV路径评价模型,根据作战环境规划出距离短、威胁小的任务路径。针对教与学算法寻优精度低、耗时长的问题,提出一种分组教与学算法,引入动态分组和高斯分布扰动策略,提高算法寻优性能。通过仿真实验,该方案求解的最优路径更短且安全。展开更多
基金supported by the National Natural Science Foundation of China(61573017)the Doctoral Innovation Found of Air Force Engineering University(KGD08101604)
文摘Manned combat aerial vehicles (MCAVs), and un-manned combat aerial vehicles (UCAVs) together form a cooper-ative engagement system to carry out operational mission, whichwill be a new air engagement style in the near future. On the basisof analyzing the structure of the MCAV/UCAV cooperative engage-ment system, this paper divides the unique system into three hi-erarchical levels, respectively, i.e., mission level, task-cluster leveland task level. To solve the formation and adjustment problem ofthe latter two levels, three corresponding mathematical modelsare established. To solve these models, three algorithms calledquantum artificial bee colony (QABC) algorithm, greedy strategy(GS) and two-stage greedy strategy (TSGS) are proposed. Finally,a series of simulation experiments are designed to verify the effec-tiveness and superiority of the proposed algorithms.
基金supported by the National Natural Science Foundation of China(61601505)the Aeronautical Science Foundation of China(20155196022)the Shaanxi Natural Science Foundation of China(2016JQ6050)
文摘This paper presents a combined strategy to solve the trajectory online optimization problem for unmanned combat aerial vehicle (UCAV). Firstly, as trajectory directly optimizing is quite time costing, an online trajectory functional representation method is proposed. Considering the practical requirement of online trajectory, the 4-order polynomial function is used to represent the trajectory, and which can be determined by two independent parameters with the trajectory terminal conditions; thus, the trajectory online optimization problem is converted into the optimization of the two parameters, which largely lowers the complexity of the optimization problem. Furthermore, the scopes of the two parameters have been assessed into small ranges using the golden section ratio method. Secondly, a multi-population rotation strategy differential evolution approach (MPRDE) is designed to optimize the two parameters; in which, 'current-to-best/1/bin', 'current-to-rand/1/bin' and 'rand/2/bin' strategies with fixed parameter settings are designed, these strategies are rotationally used by three subpopulations. Thirdly, the rolling optimization method is applied to model the online trajectory optimization process. Finally, simulation results demonstrate the efficiency and real-time calculation capability of the designed combined strategy for UCAV trajectory online optimizing under dynamic and complicated environments.
基金supported by the National Natural Science Foundation of China(7147117571471174)
文摘Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.
基金the National Natural Science Foundation of China(61933010)the Natural Science Basic Research Plan in Shaanxi Province of China(2023-JC-QN-0733).
文摘This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle(UAV)swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs’actuator and sensor.The fixed-wing UAV swarm under consideration is organized as a“multi-leader-multi-follower”structure,in which only several leaders can obtain the dynamic target information while others only receive the neighbors’information through the communication network.To simultaneously realize the formation,containment,and dynamic target tracking,a two-layer control framework is adopted to decouple the problem into two subproblems:reference trajectory generation and trajectory tracking.In the upper layer,a distributed finite-time estimator(DFTE)is proposed to generate each UAV’s reference trajectory in accordance with the control objective.Subsequently,a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer,where a novel adaptive extended super-twisting(AESTW)algorithm with a finite-time extended state observer(FTESO)is involved in solving the robust trajectory tracking control problem under model uncertainties,actuator,and sensor faults.The proposed controller simultaneously guarantees rapidness and enhances the system’s robustness with fewer chattering effects.Finally,corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme.
文摘This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.
基金supported by the National Natural Science Foundation of China (No. 61573286)the Aeronautical Science Foundation of China (No. 20180753006)+2 种基金the Fundamental Research Funds for the Central Universities (3102019ZDHKY07)the Natural Science Foundation of Shaanxi Province (2019JM-163, 2020JQ-218)the Shaanxi Province Key Laboratory of Flight Control and Simulation Technology。
文摘To solve the problem of realizing autonomous aerial combat decision-making for unmanned combat aerial vehicles(UCAVs) rapidly and accurately in an uncertain environment, this paper proposes a decision-making method based on an improved deep reinforcement learning(DRL) algorithm: the multistep double deep Q-network(MS-DDQN) algorithm. First, a six-degree-of-freedom UCAV model based on an aircraft control system is established on a simulation platform, and the situation assessment functions of the UCAV and its target are established by considering their angles, altitudes, environments, missile attack performances, and UCAV performance. By controlling the flight path angle, roll angle, and flight velocity, 27 common basic actions are designed. On this basis, aiming to overcome the defects of traditional DRL in terms of training speed and convergence speed, the improved MS-DDQN method is introduced to incorporate the final return value into the previous steps. Finally, the pre-training learning model is used as the starting point for the second learning model to simulate the UCAV aerial combat decision-making process based on the basic training method, which helps to shorten the training time and improve the learning efficiency. The improved DRL algorithm significantly accelerates the training speed and estimates the target value more accurately during training, and it can be applied to aerial combat decision-making.
基金National Key R&D Program of China(Grant No.2021YFA1000402)National Natural Science Foundation of China(Grant No.72071159)to provide fund for conducting experiments。
文摘In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.
基金supported by the National Natural Science Foundation of China(Grant Nos.60975072,60604009)the Aeronautical Science Foundation of China(Grant No.2008ZC01006)+2 种基金Beijing NOVA Program Foundation(Grant No.2007A017)the Fundamental Research Funds for the Central Universities(Grant No.YWF-10-01-A18)the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0021)
文摘Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.
基金supported by National Natural Science Foundation of China(61425008,61333004,61273054)Top-Notch Young Talents Program of China,and Aeronautical Foundation of China(2013585104)
基金supported by the National Natural Science Foundation of China(No.61573286)the Aeronautical Science Foundation of China(No.20180753006)+2 种基金the Fundamental Research Funds for the Central Universities(3102019ZDHKY07)the Natural Science Foundation of Shaanxi Province(2020JQ-218)the Shaanxi Province Key Laboratory of Flight Control and Simulation Technology。
文摘Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation during beyond-visual-range(BVR)air combat.However,prior research on occupational decision-making in BVR air combat has mostly been limited to one-on-one scenarios.As such,this study presents a practical cooperative occupation decision-making methodology for use with multiple UCAVs.The weapon engagement zone(WEZ)and combat geometry were first used to develop an advantage function for situational assessment of one-on-one engagement.An encircling advantage function was then designed to represent the cooperation of UCAVs,thereby establishing a cooperative occupation model.The corresponding objective function was derived from the one-on-one engagement advantage function and the encircling advantage function.The resulting model exhibited similarities to a mixed-integer nonlinear programming(MINLP)problem.As such,an improved discrete particle swarm optimization(DPSO)algorithm was used to identify a solution.The occupation process was then converted into a formation switching task as part of the cooperative occupation model.A series of simulations were conducted to verify occupational solutions in varying situations,including two-on-two engagement.Simulated results showed these solutions varied with initial conditions and weighting coefficients.This occupation process,based on formation switching,effectively demonstrates the viability of the proposed technique.These cooperative occupation results could provide a theoretical framework for subsequent research in cooperative BVR air combat.
文摘This paper focuses on the effects of external geometrical modifications on the aerodynamic characteristics of the MQ-1 predator Unmanned Combat Aerial Vehicle(UCAV)using computational fluid dynamics.The investigations are performed for 16 flight conditions at an altitude of7.6 km and at a constant speed of 56.32 m/s.Two models are analysed,namely the baseline model and the model with external geometrical modifications installed on it.Both the models are investigated for various angles of attack from-4°to 16°,angles of bank from 0°to 6°and angles of yaw from 0°to 4°.Due to the unavailability of any experimental(wind tunnel or flight test)data for this UCAV in the literature,a thorough verification of calculations process is presented to demonstrate confidence level in the numerical simulations.The analysis quantifies the loss of lift and increase in drag for the modified version of the MQ-1 predator UCAV along with the identification of stall conditions.Local improvement(in drag)of up to 96%has been obtained by relocating external modifications,whereas global drag force reduction of roughly 0.5%is observed.The effects of external geometrical modifications on the control surfaces indicate the blanking phenomenon and reduction in forces on the control surfaces that can reduce the aerodynamic performance of the UCAV.
文摘There are fundamental performance compromises between rotary-wing and fixed-wing UAVs. The general solution to address this well-known problem is the design of a platform with some degree of reconfigurable airframes. For critical missions (civilian or military), it is imperative that mechanical complexity is kept to a minimum to help achieve mission success. This work proposes that the tried-and-true radio controlled (RC) aerobatic airplanes can be implemented as basis for fixed-wing UAVs having both speed and vertical takeoff and landing (VTOL) capabilities. These powerful and highly maneuverable airplanes have non-rotatable nacelles, yet capable of deep stall maneuvers. The power requirements for VTOL and level flight of an aerobatic RC airplane are evaluated and they are compared to those of a RC helicopter of similar flying weight. This work provides quantitative validation that commercially available RC aerobatic airplanes can serve as platform to build VTOL capable fixed-wing UAVs that are agile, cost effective, reliable and easy maintenance.
文摘The nature and characteristics of attack unmanned combat aerial vehicle (UCAV) are analyzed. The principles of selecting takeoff thrust-weight ratio and takeoff weight of attack UCAV are presented by analyzing the statistical data of weights for various main combat aircraft. The UCAV airborne weapons are analyzed, followed by the preliminary estimation of the payload weight. Various typical engines are analyzed and one of them is selected. Then the takeoff weight of the UCAV is determined. Based on some basic parameters and assumptions, the qualitative decomposition calculation for takeoff weight is completed. The key factors for obtaining longer endurance of aircraft with small aspect ratio configuration are found to be high lift-drag ratio and internal space. On the basis of the conclusions mentioned above, a highly blended flying-wing plus lifting body concept is proposed. According to this concept, the UCAV configuration is designed and optimized. Finally, the UCAV configuration with small aspect ratio, high lift-drag ratio, and high stealth characteristic is obtained.
基金supported by the Natural Science Foundation of Shaanxi Province(2020JQ-481,2021JM-224)the Aeronautical Science Foundation of China(201951096002).
文摘The unmanned combat aerial vehicle(UCAV)is a research hot issue in the world,and the situation assessment is an important part of it.To overcome shortcomings of the existing situation assessment methods,such as low accuracy and strong dependence on prior knowledge,a datadriven situation assessment method is proposed.The clustering and classification are combined,the former is used to mine situational knowledge,and the latter is used to realize rapid assessment.Angle evaluation factor and distance evaluation factor are proposed to transform multi-dimensional air combat information into two-dimensional features.A convolution success-history based adaptive differential evolution with linear population size reduc-tion-means(C-LSHADE-Means)algorithm is proposed.The convolutional pooling layer is used to compress the size of data and preserve the distribution characteristics.The LSHADE algorithm is used to initialize the center of the mean clustering,which over-comes the defect of initialization sensitivity.Comparing experi-ment with the seven clustering algorithms is done on the UCI data set,through four clustering indexes,and it proves that the method proposed in this paper has better clustering performance.A situation assessment model based on stacked autoen-coder and learning vector quantization(SAE-LVQ)network is constructed,and it uses SAE to reconstruct air combat data fea-tures,and uses the self-competition layer of the LVQ to achieve efficient classification.Compared with the five kinds of assess-ments models,the SAE-LVQ model has the highest accuracy.Finally,three kinds of confrontation processes from air combat maneuvering instrumentation(ACMI)are selected,and the model in this paper is used for situation assessment.The assessment results are in line with the actual situation.
文摘针对无人战斗机(unmanned combat air vehicle,UCAV)处于存在威胁区域的战场中路径规划问题,提出一种基于分组教与学算法的UCAV自适应路径规划方法。通过分析UCAV路径评价指标,提出一种自适应的UCAV路径评价模型,根据作战环境规划出距离短、威胁小的任务路径。针对教与学算法寻优精度低、耗时长的问题,提出一种分组教与学算法,引入动态分组和高斯分布扰动策略,提高算法寻优性能。通过仿真实验,该方案求解的最优路径更短且安全。