Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature,...Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature, combustion velocity, microstructure and the phase of the product were investigated by XRD and SEM,respectively. The results show that a highly ferritized powder can be obtained as well as the highest combustion temperature and the highest combustion velocity when the inner oxidant content m equals 54(k-16).展开更多
The continuously dynamic-controlled combustion synthesis (CDCCS) was developed based on the continuous fluidization and combustion synthesis technologies. CoC2O4·2H2O powders were transformed to Co3O4 in a gas-...The continuously dynamic-controlled combustion synthesis (CDCCS) was developed based on the continuous fluidization and combustion synthesis technologies. CoC2O4·2H2O powders were transformed to Co3O4 in a gas-solid fluid bed unit designed and build independently, where the reactant of CoC2O4·2H2O powders and the reactant of air were poured and introduced from the top and the bottom of the bed at a certain rates respectively. The reagents met in the bed and ignited at a given low temperature, resulting in formation of Co3O4. The results show a significant difference in combustion wave models. In the case of CDCCS, there was an immobile combustion wave, floating in the combustion zone located in the middle of the bed, instead of propagating of the combustion wave. The temperature of the combustion wave can be controlled by adjusting the flow rate of carrier gas. The resultant Co3O4 powders (diameter size ≤0.8 μm) have a narrow particle size distribution and spherical or quasi-spherical shape. This novel technique has many advantages, such as continuation, efficiency, energy conservation and environmental friendly and has been used in mass production.展开更多
A nitrate-citrate combustion route to synthesize La0.9Sr0.1Ga0.8Mg0.2O3-σ powder for solid oxide fuel cell application was presented. This route is based on the gelling of nitrate solutions by the addition of citric ...A nitrate-citrate combustion route to synthesize La0.9Sr0.1Ga0.8Mg0.2O3-σ powder for solid oxide fuel cell application was presented. This route is based on the gelling of nitrate solutions by the addition of citric acid and ammonium hydroxide, followed by an intense combustion process due to an exothermic redox reaction between nitrate and citrate ions. The optimum technical parameters are that the pH value is 5, and the molar ratio of citric acid to the total metallic ion is 1.5:1. X-ray diffraction characterization of calcined gel shows that pure phase was synthesized after calcination at 1400℃for 10 h, and the TEM result shovvs the calcined powder with average particle size is about 150 nm. The grain resistance contributes to the total resistance of sintered peliet below 500℃. The conductivity of the sintered peliet at 800℃ was 0.07 S-1·cm-1 higher than the conductivity of YSZ (0.05 S-1·cm-1 at 800℃)展开更多
Nanocrystalline Hf B2 powders were successfully synthesized by molten salt synthesis technique at 1373 K using B and Hf O2 as precursors within KCl/Na Cl molten salts.The results showed that the as-synthesized powders...Nanocrystalline Hf B2 powders were successfully synthesized by molten salt synthesis technique at 1373 K using B and Hf O2 as precursors within KCl/Na Cl molten salts.The results showed that the as-synthesized powders exhibited an irregular polyhedral morphology with the average particle size of 155 nm and possessed a single-crystalline structure.From a fundamental aspect,we demonstrated the molten-salt assisted formation mechanism that the molten salts could accelerate the diffusion rate of the reactants and improve the chemical reaction rate of the reactants in the system to induce the synthesis of the high-purity nanocrystalline powders.Thermogravimetric analysis showed that the oxidation of the as-synthesized Hf B2 powders at 773–1073 K in air was the weight gain process and the corresponding oxidation behavior followed parabolic kinetics governed by the diffusion of oxygen in the oxide layer.展开更多
Nanosized BaCe_(0.95)Y_(0.05)O_(3-δ) powders with the homogeneous composition were synthesized by a new combustion process based on the Pechini method. A polymeric precursor sol was formed by use of citric acid and e...Nanosized BaCe_(0.95)Y_(0.05)O_(3-δ) powders with the homogeneous composition were synthesized by a new combustion process based on the Pechini method. A polymeric precursor sol was formed by use of citric acid and ethylene glycol as the chelating agents of metal ions. The perovskite-type BaCe_(0.95)Y_(0.05)O_(3-δ) powders with uniform shape and smaller than 40 nm in sized were obtained through the combustion of the polymeric precursor sol at the existence of nitric acid and ammonium hydroxide. It was found the particle size could be controlled by modulating the quantities of nitric acid and ammonium hydroxide, the quantities of the residue, carbonate ions were also affected by the quantities of the citric acid and ethylene glycol.展开更多
文摘Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature, combustion velocity, microstructure and the phase of the product were investigated by XRD and SEM,respectively. The results show that a highly ferritized powder can be obtained as well as the highest combustion temperature and the highest combustion velocity when the inner oxidant content m equals 54(k-16).
基金Project (2007BAE05B01) supported by the National Key Technologies R & D Program of China
文摘The continuously dynamic-controlled combustion synthesis (CDCCS) was developed based on the continuous fluidization and combustion synthesis technologies. CoC2O4·2H2O powders were transformed to Co3O4 in a gas-solid fluid bed unit designed and build independently, where the reactant of CoC2O4·2H2O powders and the reactant of air were poured and introduced from the top and the bottom of the bed at a certain rates respectively. The reagents met in the bed and ignited at a given low temperature, resulting in formation of Co3O4. The results show a significant difference in combustion wave models. In the case of CDCCS, there was an immobile combustion wave, floating in the combustion zone located in the middle of the bed, instead of propagating of the combustion wave. The temperature of the combustion wave can be controlled by adjusting the flow rate of carrier gas. The resultant Co3O4 powders (diameter size ≤0.8 μm) have a narrow particle size distribution and spherical or quasi-spherical shape. This novel technique has many advantages, such as continuation, efficiency, energy conservation and environmental friendly and has been used in mass production.
基金The authors acknowledge financial support from 863 National Project(No.2003AA302440).
文摘A nitrate-citrate combustion route to synthesize La0.9Sr0.1Ga0.8Mg0.2O3-σ powder for solid oxide fuel cell application was presented. This route is based on the gelling of nitrate solutions by the addition of citric acid and ammonium hydroxide, followed by an intense combustion process due to an exothermic redox reaction between nitrate and citrate ions. The optimum technical parameters are that the pH value is 5, and the molar ratio of citric acid to the total metallic ion is 1.5:1. X-ray diffraction characterization of calcined gel shows that pure phase was synthesized after calcination at 1400℃for 10 h, and the TEM result shovvs the calcined powder with average particle size is about 150 nm. The grain resistance contributes to the total resistance of sintered peliet below 500℃. The conductivity of the sintered peliet at 800℃ was 0.07 S-1·cm-1 higher than the conductivity of YSZ (0.05 S-1·cm-1 at 800℃)
基金financial support from the National Key R&D Program of China (No. 2017YFB0703200)National Natural Science Foundation of China (Nos. 51802100 and 51972116)+1 种基金Young Elite Scientists Sponsorship Program by CAST (No. 2017QNRC001)the fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201820)
文摘Nanocrystalline Hf B2 powders were successfully synthesized by molten salt synthesis technique at 1373 K using B and Hf O2 as precursors within KCl/Na Cl molten salts.The results showed that the as-synthesized powders exhibited an irregular polyhedral morphology with the average particle size of 155 nm and possessed a single-crystalline structure.From a fundamental aspect,we demonstrated the molten-salt assisted formation mechanism that the molten salts could accelerate the diffusion rate of the reactants and improve the chemical reaction rate of the reactants in the system to induce the synthesis of the high-purity nanocrystalline powders.Thermogravimetric analysis showed that the oxidation of the as-synthesized Hf B2 powders at 773–1073 K in air was the weight gain process and the corresponding oxidation behavior followed parabolic kinetics governed by the diffusion of oxygen in the oxide layer.
文摘Nanosized BaCe_(0.95)Y_(0.05)O_(3-δ) powders with the homogeneous composition were synthesized by a new combustion process based on the Pechini method. A polymeric precursor sol was formed by use of citric acid and ethylene glycol as the chelating agents of metal ions. The perovskite-type BaCe_(0.95)Y_(0.05)O_(3-δ) powders with uniform shape and smaller than 40 nm in sized were obtained through the combustion of the polymeric precursor sol at the existence of nitric acid and ammonium hydroxide. It was found the particle size could be controlled by modulating the quantities of nitric acid and ammonium hydroxide, the quantities of the residue, carbonate ions were also affected by the quantities of the citric acid and ethylene glycol.