期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Systematic Cloud-Based Optimization: Twin-Fold Moth Flame Algorithm for VM Deployment and Load-Balancing
1
作者 Umer Nauman Yuhong Zhang +1 位作者 Zhihui Li Tong Zhen 《Intelligent Automation & Soft Computing》 2024年第3期477-510,共34页
Cloud computing has gained significant recognition due to its ability to provide a broad range of online services and applications.Nevertheless,existing commercial cloud computing models demonstrate an appropriate des... Cloud computing has gained significant recognition due to its ability to provide a broad range of online services and applications.Nevertheless,existing commercial cloud computing models demonstrate an appropriate design by concentrating computational assets,such as preservation and server infrastructure,in a limited number of large-scale worldwide data facilities.Optimizing the deployment of virtual machines(VMs)is crucial in this scenario to ensure system dependability,performance,and minimal latency.A significant barrier in the present scenario is the load distribution,particularly when striving for improved energy consumption in a hypothetical grid computing framework.This design employs load-balancing techniques to allocate different user workloads across several virtual machines.To address this challenge,we propose using the twin-fold moth flame technique,which serves as a very effective optimization technique.Developers intentionally designed the twin-fold moth flame method to consider various restrictions,including energy efficiency,lifespan analysis,and resource expenditures.It provides a thorough approach to evaluating total costs in the cloud computing environment.When assessing the efficacy of our suggested strategy,the study will analyze significant metrics such as energy efficiency,lifespan analysis,and resource expenditures.This investigation aims to enhance cloud computing techniques by developing a new optimization algorithm that considers multiple factors for effective virtual machine placement and load balancing.The proposed work demonstrates notable improvements of 12.15%,10.68%,8.70%,13.29%,18.46%,and 33.39%for 40 count data of nodes using the artificial bee colony-bat algorithm,ant colony optimization,crow search algorithm,krill herd,whale optimization genetic algorithm,and improved Lévy-based whale optimization algorithm,respectively. 展开更多
关键词 Optimizing cloud computing deployment of virtual machines load-balancing twin-fold moth flame algorithm grid computing computational resource distribution data virtualization
下载PDF
Swarm-Based Extreme Learning Machine Models for Global Optimization
2
作者 Mustafa Abdul Salam Ahmad Taher Azar Rana Hussien 《Computers, Materials & Continua》 SCIE EI 2022年第3期6339-6363,共25页
Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapid... Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence,high time and space complexity.In ELM,the hidden layer typically necessitates a huge number of nodes.Furthermore,there is no certainty that the arrangement of weights and biases within the hidden layer is optimal.To solve this problem,the traditional ELM has been hybridized with swarm intelligence optimization techniques.This paper displays five proposed hybrid Algorithms“Salp Swarm Algorithm(SSA-ELM),Grasshopper Algorithm(GOA-ELM),Grey Wolf Algorithm(GWO-ELM),Whale optimizationAlgorithm(WOA-ELM)andMoth Flame Optimization(MFO-ELM)”.These five optimizers are hybridized with standard ELM methodology for resolving the tumor type classification using gene expression data.The proposed models applied to the predication of electricity loading data,that describes the energy use of a single residence over a fouryear period.In the hidden layer,Swarm algorithms are used to pick a smaller number of nodes to speed up the execution of ELM.The best weights and preferences were calculated by these algorithms for the hidden layer.Experimental results demonstrated that the proposed MFO-ELM achieved 98.13%accuracy and this is the highest model in accuracy in tumor type classification gene expression data.While in predication,the proposed GOA-ELM achieved 0.397which is least RMSE compared to the other models. 展开更多
关键词 Extreme learning machine salp swarm optimization algorithm grasshopper optimization algorithm grey wolf optimization algorithm moth flame optimization algorithm bio-inspired optimization classification model and whale optimization algorithm
下载PDF
A Novel Variant of Moth Flame Optimizer for Higher Dimensional Optimization Problems 被引量:1
3
作者 Saroj Kumar Sahoo Sushmita Sharma Apu Kumar Saha 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2389-2415,共27页
Moth Flame Optimization(MFO)is a nature-inspired optimization algorithm,based on the principle of navigation technique of moth toward moon.Due to less parameter and easy implementation,MFO is used in various field to ... Moth Flame Optimization(MFO)is a nature-inspired optimization algorithm,based on the principle of navigation technique of moth toward moon.Due to less parameter and easy implementation,MFO is used in various field to solve optimization problems.Further,for the complex higher dimensional problems,MFO is unable to make a good trade-off between global and local search.To overcome these drawbacks of MFO,in this work,an enhanced MFO,namely WF-MFO,is introduced to solve higher dimensional optimization problems.For a more optimal balance between global and local search,the original MFO’s exploration ability is improved by an exploration operator,namely,Weibull flight distribution.In addition,the local optimal solutions have been avoided and the convergence speed has been increased using a Fibonacci search process-based technique that improves the quality of the solutions found.Twenty-nine benchmark functions of varying complexity with 1000 and 2000 dimensions have been utilized to verify the projected WF-MFO.Numerous popular algorithms and MFO versions have been compared to the achieved results.In addition,the robustness of the proposed WF-MFO method has been evaluated using the Friedman rank test,the Wilcoxon rank test,and convergence analysis.Compared to other methods,the proposed WF-MFO algorithm provides higher quality solutions and converges more quickly,as shown by the experiments.Furthermore,the proposed WF-MFO has been used to the solution of two engineering design issues,with striking success.The improved performance of the proposed WF-MFO algorithm for addressing larger dimensional optimization problems is guaranteed by analyses of numerical data,statistical tests,and convergence performance. 展开更多
关键词 Moth flame Optimization(MFO)algorithm Bio-inspired algorithm Fibonacci search method Weibull distribution Higher dimensional functions
原文传递
A Nonlinear Grey Bernoulli Model with Conformable Fractional-Order Accumulation and Its Application to the Gross Regional Product in the Cheng-Yu Area
4
作者 Wenqing WU Xin MA +1 位作者 Bo ZENG Yuanyuan ZHANG 《Journal of Systems Science and Information》 CSCD 2024年第2期245-273,共29页
This study considers a nonlinear grey Bernoulli forecasting model with conformable fractionalorder accumulation,abbreviated as CFNGBM(1,1,λ),to study the gross regional product in the ChengYu area.The new model conta... This study considers a nonlinear grey Bernoulli forecasting model with conformable fractionalorder accumulation,abbreviated as CFNGBM(1,1,λ),to study the gross regional product in the ChengYu area.The new model contains three nonlinear parameters,the power exponentγ,the conformable fractional-orderαand the background valueλ,which increase the adjustability and flexibility of the CFNGBM(1,1,λ)model.Nonlinear parameters are determined by the moth flame optimization algorithm,which minimizes the mean absolute prediction percentage error.The CFNGBM(1,1,λ)model is applied to the gross regional product of 16 cities in the Cheng-Yu area,which are Chongqing,Chengdu,Mianyang,Leshan,Zigong,Deyang,Meishan,Luzhou,Suining,Neijiang,Nanchong,Guang’an,Yibin,Ya’an,Dazhou and Ziyang.With data from 2013 to 2021,several grey models are established and results show that the new model has higher accuracy in most cases. 展开更多
关键词 nonlinear grey Bernoulli model conformable fractional-order operator moth flame optimization algorithm gross regional product the Cheng-Yu area
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部