CH_(4)/DME mixtures can be used for engines and gas turbines,and have already been studied for many years.However,DME has a strong cool flame phenomenon,which will greatly influence the ignition and combustion charact...CH_(4)/DME mixtures can be used for engines and gas turbines,and have already been studied for many years.However,DME has a strong cool flame phenomenon,which will greatly influence the ignition and combustion characteristics of following hot flames.Therefore,the cool flame characteristics of CH_(4)/DME mixture are very important for their utilization.Recently,the inhibition effect of CH_(4)on DME cool flames has been discovered,but the mechanisms of the inhibition effects lack further verification and research.In this study,the inhibition effects were investigated via both experiments and simulations.In order to validate the inhibition effects,a comparison fuel of CH_(3)OH/DME was also used in this study.The extinction limits,flame temperatures and combustion products of the cool flames of the CH_(4)/DME and CH_(3)OH/DME mixtures were measured using a counterflow burner,and the reaction paths and heat release rate were derived from the HPMech-v3.3.The results indicate that CH_(4)and CH_(3)OH will both inhibit the cool flame of DME via competing with DME for OH and O radicals,and CH_(3)OH has stronger inhibition effects than CH_(4),because it is more competitive and produces more CH2O,which inhibits the oxidation of DME.The HPMech-v3.3 closely agrees with the experimental data,but still needs to be improved.展开更多
基金The authors gratefully acknowledge the support from the National Key R&D Program of China(2016YFB0600100)the Fundamental Research Funds for the Central Universities(30919012104).
文摘CH_(4)/DME mixtures can be used for engines and gas turbines,and have already been studied for many years.However,DME has a strong cool flame phenomenon,which will greatly influence the ignition and combustion characteristics of following hot flames.Therefore,the cool flame characteristics of CH_(4)/DME mixture are very important for their utilization.Recently,the inhibition effect of CH_(4)on DME cool flames has been discovered,but the mechanisms of the inhibition effects lack further verification and research.In this study,the inhibition effects were investigated via both experiments and simulations.In order to validate the inhibition effects,a comparison fuel of CH_(3)OH/DME was also used in this study.The extinction limits,flame temperatures and combustion products of the cool flames of the CH_(4)/DME and CH_(3)OH/DME mixtures were measured using a counterflow burner,and the reaction paths and heat release rate were derived from the HPMech-v3.3.The results indicate that CH_(4)and CH_(3)OH will both inhibit the cool flame of DME via competing with DME for OH and O radicals,and CH_(3)OH has stronger inhibition effects than CH_(4),because it is more competitive and produces more CH2O,which inhibits the oxidation of DME.The HPMech-v3.3 closely agrees with the experimental data,but still needs to be improved.