Asymptotic analysis is conducted for outwardly propagating spherical flames with large activation energy. The spherical flame structure consists of the preheat zone, reaction zone, and equilibrium zone. Analytical sol...Asymptotic analysis is conducted for outwardly propagating spherical flames with large activation energy. The spherical flame structure consists of the preheat zone, reaction zone, and equilibrium zone. Analytical solutions are separately obtained in these three zones and then asymp- totically matched. In the asymptotic analysis, we derive a correlation describing the spherical flame temperature and propagation speed changing with the flame radius. This cor- relation is compared with previous results derived in the limit of infinite value of activation energy. Based on this correla- tion, the properties of spherical flame propagation are inves- tigated and the effects of Lewis number on spherical flame propagation speed and extinction stretch rate are assessed. Moreover, the accuracy and performance of different mod- els used in the spherical flame method are examined. It is found that in order to get accurate laminar flame speed and Markstein length, non-linear models should be used.展开更多
AutoReaGas was used for the simulations of premixed gas/air mixtures explosion characteristics in obstacle-filled tubes with a cross-section of 0.2 m×0.2 m and the length of 28 m. Numerical analyses provide a qua...AutoReaGas was used for the simulations of premixed gas/air mixtures explosion characteristics in obstacle-filled tubes with a cross-section of 0.2 m×0.2 m and the length of 28 m. Numerical analyses provide a quantitative description of dependence of flame propagation speed and explosion overpressure on obstacles number, blockage ratio and interval distance. Computational results indicate that the obstacles play a significant role in determining the flame transmission speed and explosion overpressure in gas explosions. With the increase of blockage ratio, the explosion overpressure gradually rises. Nevertheless, the flame speed does not always increase along with increasing blockage ratio, but subsequently begins to decrease as the blockage ratio increases to some extend. Also, the interval distance between obstacles strongly influences flame behavior and explosion overpressure. When the obstacle interval distance is equal to inner diameter of the tube, the average flame speed in the obstacle zone and the peak overpressure in tube all reach maximum values.展开更多
An experimental study on acceleration mechanism of flame propagation of propane-air mixture in ducts with obstacles was conducted. The acceleration mechanism of flame propagation is mainly due to the positive feedback...An experimental study on acceleration mechanism of flame propagation of propane-air mixture in ducts with obstacles was conducted. The acceleration mechanism of flame propagation is mainly due to the positive feedback of the turbulence region induced by obstacles for combustion process. It can be seen from the experimental results that the maximum explosion pressure can increase by 20%, the maximum rate of pressure rise can increase by 10 times and the flame propagation velocity can increase by 20 times when obstacles are present.展开更多
Based on the assumption of a local non-equilibrium of heat transfer between a solid matrix and gas,a mathematic model of coal mine methane combustion in a porous medium was established,as well the solid-gas boundary c...Based on the assumption of a local non-equilibrium of heat transfer between a solid matrix and gas,a mathematic model of coal mine methane combustion in a porous medium was established,as well the solid-gas boundary conditions.We simulated numerically the flame propagation characteristics.The results show that the flame velocity in ceramic foam is higher than that of free laminar flows;the maximum flame velocity depends on the combined effects of a radiation extinction coefficient and convection heat transfer in ceramic foam and rises with an increase in the chemical equivalent ratio.The radiation extinction coefficient cannot be used alone to determine the heat regeneration effects in the design of ceramic foam burners.展开更多
In coal industry,gas explosion accidents emerge constantly,causing enormous casualties and poorer material property.In the course of studying gas exploding mechanism,the propagation velocity of the flame wave front is...In coal industry,gas explosion accidents emerge constantly,causing enormous casualties and poorer material property.In the course of studying gas exploding mechanism,the propagation velocity of the flame wave front is one of the most important factors.A set of flame velocity measuring system was designed according to the horizontal pipelined experimental facility of North University of China to study the effects of the quantity and blockage ratio of the circle ring obstacle on the flame propagation velocity in the inclosed tube.The research results show that the obstacle has obviously accelerating effect on the flame wave of gas explosion With the increase of quantity and blockage ratio of the obstacle,the flame accelerating effect becomes more obvious and the flame accelerating persistence is intenser,of which the effect of the quantity of the obstacle on the flame accelerating persistence is larger,but the effect of the blockage ratio of the obstacle on the flame accelerating persistenceis not obvious.展开更多
The presence of coal dust explosions in coal mining are significant safety hazards.This study mainly explores the flame propagation of coal dust combustion so as to provide a theoretical basis for the prevention and c...The presence of coal dust explosions in coal mining are significant safety hazards.This study mainly explores the flame propagation of coal dust combustion so as to provide a theoretical basis for the prevention and control of coal dust explosions.In the experiment,a dust cloud ignition device was used to experimentally explore the influence of the coal dust concentration on the flame propagation of the coal dust,and high-speed photography was used to record the coal dust flame propagation process.The results show that the flame propagates vertically along the wall of the vertical glass tube,emits a bright yellow light during the propagation process,and forms a mushroom cloud-shaped flame at the upper end of the vertical glass tube.When the concentration of coal dust is 250 g/m^(3),its burning time is much less than those of 500 g/m^(3)and 750 g/m^(3).When the concentrations are 250 g/m^(3),500 g/m^(3)and 750 g/m^(3),respectively,the corresponding maximum propagation velocities of the flame front reach 1.51 m/s,2.00 m/s and 1.61 m/s at 100 ms,353 ms and 310 ms,respectively.The time for the flame front velocity to reach the maximum and the maximum velocity of flame propagation first increase and then decrease with the rising of concentration.展开更多
The flame propagation of methane-air mixture with various methane concen-trations was experimentally investigated at venting flame acceleration tube with quad-rate cross section under different obstacles presented. Th...The flame propagation of methane-air mixture with various methane concen-trations was experimentally investigated at venting flame acceleration tube with quad-rate cross section under different obstacles presented. The flame shape and propaga-tion speed was observed by high-speed color video camera. The explosion pressure was determined by piezoelectricity pressure transducers. The results are: The flame propagates in the shape of a hemisphere before the flame reaches the first baffle and flame propagation speed is not more than 15 m/s. When the flame propagates across the baffle, the flame begins to accelerate due to turbulence induced by obstacle. Blockage ratio has relatively greater effect on the flame propagation speed than re-peated baffle number does. The flame propagation speed and the pressure at different location along the tube are maximum when methane-air mixture is near the chemical stoichoimetric ratio. The pressure increases with the distance from ignition end at first and the maximum pressure was obtained at the middle of tube, but the pressure de-creases and again increases at venting end.展开更多
An experimental study was carried out to investigate the flame propagation and thermal hazard of the premixed N2O/fuel mixtures,including NH3,C3H8 and C2H4.The study provided the high speed video images and data about...An experimental study was carried out to investigate the flame propagation and thermal hazard of the premixed N2O/fuel mixtures,including NH3,C3H8 and C2H4.The study provided the high speed video images and data about the flame locations,propagation patterns,overpressures and the quenching diameters during the course of combustion in different channels to elucidate the dynamics of various combustion processes.The onset decomposition temperature was determined using high-performance adiabatic calorimetry.It was shown that the order of the flame acceleration rate and thermal hazard was N2O/C2H4>N2O/C3H8>N2O/NH3.展开更多
In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimat...In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimate flame propagation speed in a lean/rich reaction medium.Flame speed for different particle diameters and the effects of various oxidizers such as carbon dioxide and oxygen on flame speed were studied.Nitrogen was considered the inert gas.In addition,the quenching distance and the minimum ignition energy(MIE) were studied as a function of dust concentration.Different burning time models for aluminum were employed and their results were compared with each other.The model was based on conduction heat transfer mechanism using the heat point source method.The combustion of single-particle was first studied and the solution was presented.Then the dust combustion was investigated using the superposition principle to include the effects of surrounding particles.It is found that larger particles have higher values of quenching distance in comparison with smaller particles in an assumed dust concentration.With the increase of dust concentration the value of MIE would be decreased for an assumed particle diameter.Considering random discrete heat sources method,the obtained results of random distribution of fuel particles in space provide closer and realistic predictions of the combustion physics of aluminum dust flame as compared with the experimental findings.展开更多
To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods w...To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods were used to record the processes of interaction between rare- faction wave and flame. Meanwhile, a pressure sensor was utilized to catch the pressure variation in the process of flame propagation. The experiment results showed that the interference of rarefaction wave on flame caused the flame front structure change, which led to the flame transition from lami- nar to turbulent quickly. The rarefaction wave intervened in the flame by turning the flame front sur- face into dentiform structure. The violent turbulent combustion began to appear in part of the flame front and spreaded to the whole flame front surface. The rarefaction also decreased the flame propa- gation speed.展开更多
Oxygen rich combustion is a mean to increase the energy efficiency and to contribute to CO2 capture. Influence of oxygen enriched air on the stability of methane flames from non premixed laminar jets has been investig...Oxygen rich combustion is a mean to increase the energy efficiency and to contribute to CO2 capture. Influence of oxygen enriched air on the stability of methane flames from non premixed laminar jets has been investigated experimentally. The burner consists of two coaxial jets: methane flowing out of the inner, oxidizer from the outer. The flame behavior is studied according to the proportion of oxygen in the oxidizer jet, the oxidizer and the methane jets velocities. The flame is either anchored to the burner, lifted, stationary or not or blown-out. The addition of oxygen produces a decrease of the lift height, a reduction of the length of the reaction zone and an increase in the soot emission. These results have been reported into diagrams of stability where the flame configurations are connected to the competition between the dynamic effect of the injection velocity and the chemical effect of oxygen addition.展开更多
Measuring the dust explosion characteristics of aluminum-based activated fuels was a prerequisite for developing effective prevention and control measures.In this paper,ignition sensitivity,flame propagation behaviors...Measuring the dust explosion characteristics of aluminum-based activated fuels was a prerequisite for developing effective prevention and control measures.In this paper,ignition sensitivity,flame propagation behaviors and explosion severity of aluminum/polytetrafluoroethylene(Al/PTFE)compositions including 2 PT(2.80 wt.%F),4 PT(7.18 wt.%F)and 8 PT(11.90 wt.%F)were studied.When the content of F increased from 2.80 wt.%to 11.90 wt.%,the minimum explosive concentration MEC decreased from380 g/m^(3)to 140 g/m^(3),due to the dual effects of increased internal active aluminum and enhanced reactivity.The average flame propagation velocities increased as the percentage of F increased.The maximum explosion pressure Pmof 500 g/m3aluminum-based activated fuels increased from 247 k Pa to299 kPa.Scanning electron microscopy demonstrated that with the increase of PTFE content,the reaction was more complete.On this basis,the explosion mechanism of aluminum-based activated fuels was revealed.展开更多
To research the characteristics of vented explosion of methane-air mixture in the pipeline,coal mine tunnel or other closed space,the experiments and numerical simulations were carried out.In this work,explosion chara...To research the characteristics of vented explosion of methane-air mixture in the pipeline,coal mine tunnel or other closed space,the experiments and numerical simulations were carried out.In this work,explosion characteristics and flame propagation characteristics of methane in pipeline and coal mine tunnel are studied by using an explosion test system,combined with FLACS software,under different vented conditions.The numerical simulation results of methane explosion are basically consistent with the physical experiment results,which indicates that the numerical simulation for methane explosion is reliable to be applied to the practice.The results show that explosion parameters(pressure,temperature and product concentration)of methane at five volume fractions have the same change trend.Nevertheless,the explosion intension of 10.0%methane is the largest and that of 9.5%methane is relatively weak,followed by 11.0%methane,8.0%methane and 7.0%methane respectively.Under different vented conditions,the pressure and temperature of methane explosion are the highest in the pipeline without a vent,followed by the pipeline where ignition or vent position is in each end,and those are the lowest in the pipeline with ignition and vent at the same end.There is no significant effect on final product concentration of methane explosion under three vented conditions.For coal mine tunnel,it is indicated that the maximum explosion pressure at the airproof wall in return airway with the branch roadway at 50 m from goaf is significantly decreased while that in intake airway does not change overwhelmingly.In addition,when the branch roadway is longer or its section is larger,the peak pressure of airproof wall reduces slightly.展开更多
To investigate the flame and overpressure characteristics of methane–air explosion with different obstacle configurations,an experimental study has been conducted,taking account of the number of obstacles,obstacle di...To investigate the flame and overpressure characteristics of methane–air explosion with different obstacle configurations,an experimental study has been conducted,taking account of the number of obstacles,obstacle distance from ignition source,and stream-wise and cross-wise obstacle positions.The results show that the flame speed and peak overpressure increase with the increasing number of obstacles,while the time to reach the peak is not fully determined by it.And the configuration having the farthest obstacle produces a higher overpressure and takes a longer time to reach the peak,but a slower flame propagation speed is obtained.Similar explosion characteristics are also observed in the configurations with two obstacles fixed at different stream-wise positions.Furthermore,the experimental results demonstrate that the peak overpressures and flame speeds in configurations with central or staggered obstacles are relatively higher,which should to be avoided in practical processes to minimize the risk associated with methane–air explosion.展开更多
The experiment of gas and coal dust explosion propagation in a single lanewaywas carried out in a large experimental roadway that is nearly the same with actual environmentand geometry conditions.In the experiment,the...The experiment of gas and coal dust explosion propagation in a single lanewaywas carried out in a large experimental roadway that is nearly the same with actual environmentand geometry conditions.In the experiment,the time when the gas and coal dustexplosion flame reaches test points has a logarithmic function relation with the test pointdistances.The explosion flame propagation velocity rises rapidly in the foreside of the coaldust segment and comes down after that.The length of the flame area is about 2 timesthat of the original coal dust accumulation area.Shock wave pressure comes down to therock bottom in the coal dust segment,then reaches the maximum peak rapidly and comesdown.The theoretical basis of the research and assemble of across or explosion is suppliedby the experiment conclusion.Compared with gas explosion,the force and destructiondegree of gas and coal dust explosion is much larger.展开更多
In order to reveal the effect of turnings on explosion propagation, experiments were performed in three different pipes (single bend, U-shaped pipe and Z-shaped pipe). Flame and pressure transducers were used to tra...In order to reveal the effect of turnings on explosion propagation, experiments were performed in three different pipes (single bend, U-shaped pipe and Z-shaped pipe). Flame and pressure transducers were used to track the velocity at the explosion front. When the pipes were filled with methane, the explosion strength was significantly enhanced due to the turbulence induced by increasing the number of turnings, while the flame speed (Sf) and peak overpressure (ΔPmax) increased dramatically. In addition, the strength of the explosion increased in violence as a function of the number of turnings. However, when the bend was without methane, the turnings weakened the strength of the explosion compared with the ordinary pipe, shown by the decrease in the values of ΔPmax and Sf. In addition, the propagation characteristics in a U-shaped pipe were similar to those in a Z-shaped pipe and the values of APmax and Sf were also close. The results show that the explosion propagation characteristics largely depend on gas distribution in the pipes and the number of turnings. The different directions of the turnings had no effect.展开更多
The effects of the number of layers,the arrangement of carbon fiber(CF)tow and the epoxy resin(ER)matrix on the fire performance of carbon fiber/epoxy composites(CFEC)were studied by a variety of experimental methods....The effects of the number of layers,the arrangement of carbon fiber(CF)tow and the epoxy resin(ER)matrix on the fire performance of carbon fiber/epoxy composites(CFEC)were studied by a variety of experimental methods.The results show that the number of layers of CF tow has influence on the combustion characteristics and fire propagation of the composites.The arrangement of CF tow has influence on flame propagation rate and high temperature mechanicalproperties.The mechanism of the influence of the number of layers of CF tow on the composite is mainly due to the different thermal capacity of ER matrix.The effect of the arrangement of CF tow on the fire performance of the composite is mainly due to the inhibition and obstruction of the tow on the combustion of ER matrix.The influence on the high temperature mechanicalproperties is mainly due to the different arrangement direction of CF tow.The fitting equation of the mechanicalproperties of the samples was obtained.This equation could be used to predict the samples’tensile strength from 25°C to 150℃by comparing with the experimental results.Taking the carbon fiber woven cloth(C)applied in the fuselage material as an example,combining the influencing factors of various parameters in the fire field,some suggestions are put forward combined with the research conclusion.展开更多
The effect of the electric field with different intensity on explosion wave pressure and flame propagation velocity of gas explosion was experimentally studied, and the effect of electric field on gas explosion and it...The effect of the electric field with different intensity on explosion wave pressure and flame propagation velocity of gas explosion was experimentally studied, and the effect of electric field on gas explosion and its propagation was theoretically analyzed from heat transportation, mass transportation, and reaction process of gas explosion. The results show that the electric field can affect gas explosion by enhancing explosion intensity and explosion pressure, thus increasing flame velocity. The electric field can offer energy to the gas explosion reaction; the effect of the electric field on gas explosion increases with the increase of electric field intensity. The electric field can increase mass transfer action, heat transfer action, convection effects, diffusion coefficient, and the reaction system entropy, which make the turbulence of gas explosion in electric field increase; therefore, the electric field can improve flame combustion velocity and flame propagation velocity, release more energy, increase shock wave energy, and then promote the gas explosion and its propagation.展开更多
The structure of the trapped-vortex cavity and radial flameholder can maintain stable combustion under severe conditions,such as sub-atmospheric pressure and high inlet velocity.This article reports a complete study o...The structure of the trapped-vortex cavity and radial flameholder can maintain stable combustion under severe conditions,such as sub-atmospheric pressure and high inlet velocity.This article reports a complete study of combustion characteristics for this design.The flow field of the physical model was obtained by numerical simulation.The pilot combustion characteristics,including the combustion process,combustion efficiency,and wall temperature distribution,were studied by experiments.The pilot combustion can be divided into three modes under different fuel flow rates and inlet conditions.In“cavity maintained(CM)”mode,pilot flame exists at both sides of the cavity zone,rotating with the main vortex.In“cavity-flameholder maintained(CFM)”mode,the combustion process occurs both inside the cavity and behind the flameholder.While in“flameholder maintained(FM)”mode,the cavity will quench,and the combustion is maintained by the radial flameholder only.Due to the difference in the flow field,the flame pattern and propagation direction vary under different combustion modes.The combustion efficiency,influenced by combustion modes,shows an increase-decrease-increase curve.The wall temperature distribution is also affected;the cavity wall temperature decreases under large fuel flux while the temperature of the burner-back plate continues to rise to a maximum value.展开更多
This study investigates the end-burning hybrid rocket motors with polyethylene fuel by the numerical simulation and experiment.Based on computational fluid dynamics,a numerical model is developed.The model is validate...This study investigates the end-burning hybrid rocket motors with polyethylene fuel by the numerical simulation and experiment.Based on computational fluid dynamics,a numerical model is developed.The model is validated by two firing tests in this hybrid rocket motor,which uses oxygen and polyethylene as propellants.The results show that the numerical and experimental data are in good agreement,and the error of the chamber pressure is less than 2.63%.Based on the simulation mode,the blowoff limit of the end-burning hybrid rocket motors is investigated.When the nozzle throat diameter and the inner diameter of grain are large,it is more difficult for the hybrid rocket motor to achieve end-burning mode,i.e.,the flame spreading is prevented in the narrow duct.The main reason is that when the nozzle throat and the grain port are large,chamber pressure and oxidizer flow velocity are low.Therefore,the friction velocity considering the pressure and flow velocity is proposed.The critical friction velocity is about 4.054–4.890 m/s in the hybrid rocket motors.When the friction velocity exceeds the critical friction velocity,the combustion mode in hybrid rocket motors changes from the flame spreading mode to the end-burning mode.Moreover,the regression rate formula is obtained by fitting,which shows that the regression rate has a good correlation with combustion chamber pressure.The critical friction velocity and regression rate formula can provide an important reference for end-burning hybrid rocket motors.展开更多
基金supported by the National Natural Science Foundation of China (50976003,51136005)Doctoral Fund of Ministry of Education of China (20100001120003)
文摘Asymptotic analysis is conducted for outwardly propagating spherical flames with large activation energy. The spherical flame structure consists of the preheat zone, reaction zone, and equilibrium zone. Analytical solutions are separately obtained in these three zones and then asymp- totically matched. In the asymptotic analysis, we derive a correlation describing the spherical flame temperature and propagation speed changing with the flame radius. This cor- relation is compared with previous results derived in the limit of infinite value of activation energy. Based on this correla- tion, the properties of spherical flame propagation are inves- tigated and the effects of Lewis number on spherical flame propagation speed and extinction stretch rate are assessed. Moreover, the accuracy and performance of different mod- els used in the spherical flame method are examined. It is found that in order to get accurate laminar flame speed and Markstein length, non-linear models should be used.
文摘AutoReaGas was used for the simulations of premixed gas/air mixtures explosion characteristics in obstacle-filled tubes with a cross-section of 0.2 m×0.2 m and the length of 28 m. Numerical analyses provide a quantitative description of dependence of flame propagation speed and explosion overpressure on obstacles number, blockage ratio and interval distance. Computational results indicate that the obstacles play a significant role in determining the flame transmission speed and explosion overpressure in gas explosions. With the increase of blockage ratio, the explosion overpressure gradually rises. Nevertheless, the flame speed does not always increase along with increasing blockage ratio, but subsequently begins to decrease as the blockage ratio increases to some extend. Also, the interval distance between obstacles strongly influences flame behavior and explosion overpressure. When the obstacle interval distance is equal to inner diameter of the tube, the average flame speed in the obstacle zone and the peak overpressure in tube all reach maximum values.
文摘An experimental study on acceleration mechanism of flame propagation of propane-air mixture in ducts with obstacles was conducted. The acceleration mechanism of flame propagation is mainly due to the positive feedback of the turbulence region induced by obstacles for combustion process. It can be seen from the experimental results that the maximum explosion pressure can increase by 20%, the maximum rate of pressure rise can increase by 10 times and the flame propagation velocity can increase by 20 times when obstacles are present.
基金supported by the National Natural Science Foundation of China (No.50534090)the Science Foundation of China University of Mining and Technology (No.0E061046)
文摘Based on the assumption of a local non-equilibrium of heat transfer between a solid matrix and gas,a mathematic model of coal mine methane combustion in a porous medium was established,as well the solid-gas boundary conditions.We simulated numerically the flame propagation characteristics.The results show that the flame velocity in ceramic foam is higher than that of free laminar flows;the maximum flame velocity depends on the combined effects of a radiation extinction coefficient and convection heat transfer in ceramic foam and rises with an increase in the chemical equivalent ratio.The radiation extinction coefficient cannot be used alone to determine the heat regeneration effects in the design of ceramic foam burners.
基金Major Research and Development Project of Shanxi Province(No.201603D121012)
文摘In coal industry,gas explosion accidents emerge constantly,causing enormous casualties and poorer material property.In the course of studying gas exploding mechanism,the propagation velocity of the flame wave front is one of the most important factors.A set of flame velocity measuring system was designed according to the horizontal pipelined experimental facility of North University of China to study the effects of the quantity and blockage ratio of the circle ring obstacle on the flame propagation velocity in the inclosed tube.The research results show that the obstacle has obviously accelerating effect on the flame wave of gas explosion With the increase of quantity and blockage ratio of the obstacle,the flame accelerating effect becomes more obvious and the flame accelerating persistence is intenser,of which the effect of the quantity of the obstacle on the flame accelerating persistence is larger,but the effect of the blockage ratio of the obstacle on the flame accelerating persistenceis not obvious.
基金National Natural Science Foundation of China(No.11802272)Key Research and Development(R&D)Projects of Shanxi Province(No.201903D121028)+1 种基金Natural Science Foundation of Shanxi Province(No.201901D211228)National Defense Key Laboratory Foundation of Science and Technology on Combustion and Explosive Laboratory(Nos.6142603200509,6142603180408)。
文摘The presence of coal dust explosions in coal mining are significant safety hazards.This study mainly explores the flame propagation of coal dust combustion so as to provide a theoretical basis for the prevention and control of coal dust explosions.In the experiment,a dust cloud ignition device was used to experimentally explore the influence of the coal dust concentration on the flame propagation of the coal dust,and high-speed photography was used to record the coal dust flame propagation process.The results show that the flame propagates vertically along the wall of the vertical glass tube,emits a bright yellow light during the propagation process,and forms a mushroom cloud-shaped flame at the upper end of the vertical glass tube.When the concentration of coal dust is 250 g/m^(3),its burning time is much less than those of 500 g/m^(3)and 750 g/m^(3).When the concentrations are 250 g/m^(3),500 g/m^(3)and 750 g/m^(3),respectively,the corresponding maximum propagation velocities of the flame front reach 1.51 m/s,2.00 m/s and 1.61 m/s at 100 ms,353 ms and 310 ms,respectively.The time for the flame front velocity to reach the maximum and the maximum velocity of flame propagation first increase and then decrease with the rising of concentration.
文摘The flame propagation of methane-air mixture with various methane concen-trations was experimentally investigated at venting flame acceleration tube with quad-rate cross section under different obstacles presented. The flame shape and propaga-tion speed was observed by high-speed color video camera. The explosion pressure was determined by piezoelectricity pressure transducers. The results are: The flame propagates in the shape of a hemisphere before the flame reaches the first baffle and flame propagation speed is not more than 15 m/s. When the flame propagates across the baffle, the flame begins to accelerate due to turbulence induced by obstacle. Blockage ratio has relatively greater effect on the flame propagation speed than re-peated baffle number does. The flame propagation speed and the pressure at different location along the tube are maximum when methane-air mixture is near the chemical stoichoimetric ratio. The pressure increases with the distance from ignition end at first and the maximum pressure was obtained at the middle of tube, but the pressure de-creases and again increases at venting end.
基金This research was supported by Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory(STACPLXXXXXXXX).
文摘An experimental study was carried out to investigate the flame propagation and thermal hazard of the premixed N2O/fuel mixtures,including NH3,C3H8 and C2H4.The study provided the high speed video images and data about the flame locations,propagation patterns,overpressures and the quenching diameters during the course of combustion in different channels to elucidate the dynamics of various combustion processes.The onset decomposition temperature was determined using high-performance adiabatic calorimetry.It was shown that the order of the flame acceleration rate and thermal hazard was N2O/C2H4>N2O/C3H8>N2O/NH3.
文摘In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimate flame propagation speed in a lean/rich reaction medium.Flame speed for different particle diameters and the effects of various oxidizers such as carbon dioxide and oxygen on flame speed were studied.Nitrogen was considered the inert gas.In addition,the quenching distance and the minimum ignition energy(MIE) were studied as a function of dust concentration.Different burning time models for aluminum were employed and their results were compared with each other.The model was based on conduction heat transfer mechanism using the heat point source method.The combustion of single-particle was first studied and the solution was presented.Then the dust combustion was investigated using the superposition principle to include the effects of surrounding particles.It is found that larger particles have higher values of quenching distance in comparison with smaller particles in an assumed dust concentration.With the increase of dust concentration the value of MIE would be decreased for an assumed particle diameter.Considering random discrete heat sources method,the obtained results of random distribution of fuel particles in space provide closer and realistic predictions of the combustion physics of aluminum dust flame as compared with the experimental findings.
基金Supported by the National Natural Science Foundation of China(50804038)
文摘To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods were used to record the processes of interaction between rare- faction wave and flame. Meanwhile, a pressure sensor was utilized to catch the pressure variation in the process of flame propagation. The experiment results showed that the interference of rarefaction wave on flame caused the flame front structure change, which led to the flame transition from lami- nar to turbulent quickly. The rarefaction wave intervened in the flame by turning the flame front sur- face into dentiform structure. The violent turbulent combustion began to appear in part of the flame front and spreaded to the whole flame front surface. The rarefaction also decreased the flame propa- gation speed.
文摘Oxygen rich combustion is a mean to increase the energy efficiency and to contribute to CO2 capture. Influence of oxygen enriched air on the stability of methane flames from non premixed laminar jets has been investigated experimentally. The burner consists of two coaxial jets: methane flowing out of the inner, oxidizer from the outer. The flame behavior is studied according to the proportion of oxygen in the oxidizer jet, the oxidizer and the methane jets velocities. The flame is either anchored to the burner, lifted, stationary or not or blown-out. The addition of oxygen produces a decrease of the lift height, a reduction of the length of the reaction zone and an increase in the soot emission. These results have been reported into diagrams of stability where the flame configurations are connected to the competition between the dynamic effect of the injection velocity and the chemical effect of oxygen addition.
基金financially supported by National Natural Science Foundation of China(No.51922025 and No.51874066)China Postdoctoral Science Foundation(No.2020M670759)the Fundamental Research Funds for the Central Universities(No.DUT20GJ201)。
文摘Measuring the dust explosion characteristics of aluminum-based activated fuels was a prerequisite for developing effective prevention and control measures.In this paper,ignition sensitivity,flame propagation behaviors and explosion severity of aluminum/polytetrafluoroethylene(Al/PTFE)compositions including 2 PT(2.80 wt.%F),4 PT(7.18 wt.%F)and 8 PT(11.90 wt.%F)were studied.When the content of F increased from 2.80 wt.%to 11.90 wt.%,the minimum explosive concentration MEC decreased from380 g/m^(3)to 140 g/m^(3),due to the dual effects of increased internal active aluminum and enhanced reactivity.The average flame propagation velocities increased as the percentage of F increased.The maximum explosion pressure Pmof 500 g/m3aluminum-based activated fuels increased from 247 k Pa to299 kPa.Scanning electron microscopy demonstrated that with the increase of PTFE content,the reaction was more complete.On this basis,the explosion mechanism of aluminum-based activated fuels was revealed.
基金Project(51674193)supported by the National Natural Science Foundation of ChinaProject(2019-JLM-9)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(2019-M-663780)supported by the Postdoctoral Science Foundation,China。
文摘To research the characteristics of vented explosion of methane-air mixture in the pipeline,coal mine tunnel or other closed space,the experiments and numerical simulations were carried out.In this work,explosion characteristics and flame propagation characteristics of methane in pipeline and coal mine tunnel are studied by using an explosion test system,combined with FLACS software,under different vented conditions.The numerical simulation results of methane explosion are basically consistent with the physical experiment results,which indicates that the numerical simulation for methane explosion is reliable to be applied to the practice.The results show that explosion parameters(pressure,temperature and product concentration)of methane at five volume fractions have the same change trend.Nevertheless,the explosion intension of 10.0%methane is the largest and that of 9.5%methane is relatively weak,followed by 11.0%methane,8.0%methane and 7.0%methane respectively.Under different vented conditions,the pressure and temperature of methane explosion are the highest in the pipeline without a vent,followed by the pipeline where ignition or vent position is in each end,and those are the lowest in the pipeline with ignition and vent at the same end.There is no significant effect on final product concentration of methane explosion under three vented conditions.For coal mine tunnel,it is indicated that the maximum explosion pressure at the airproof wall in return airway with the branch roadway at 50 m from goaf is significantly decreased while that in intake airway does not change overwhelmingly.In addition,when the branch roadway is longer or its section is larger,the peak pressure of airproof wall reduces slightly.
基金supported by the National Natural Science Foundation of China (Nos.51106044 and 51176021)the Research Foundation of Education Bureau of Henan Province of China (No.14A410007)
文摘To investigate the flame and overpressure characteristics of methane–air explosion with different obstacle configurations,an experimental study has been conducted,taking account of the number of obstacles,obstacle distance from ignition source,and stream-wise and cross-wise obstacle positions.The results show that the flame speed and peak overpressure increase with the increasing number of obstacles,while the time to reach the peak is not fully determined by it.And the configuration having the farthest obstacle produces a higher overpressure and takes a longer time to reach the peak,but a slower flame propagation speed is obtained.Similar explosion characteristics are also observed in the configurations with two obstacles fixed at different stream-wise positions.Furthermore,the experimental results demonstrate that the peak overpressures and flame speeds in configurations with central or staggered obstacles are relatively higher,which should to be avoided in practical processes to minimize the risk associated with methane–air explosion.
基金Supported by the National Basic Research Program(973)(2005CB221506)the Open Research Fund Program of Shandong University of Science and Technology(MDPC0611)
文摘The experiment of gas and coal dust explosion propagation in a single lanewaywas carried out in a large experimental roadway that is nearly the same with actual environmentand geometry conditions.In the experiment,the time when the gas and coal dustexplosion flame reaches test points has a logarithmic function relation with the test pointdistances.The explosion flame propagation velocity rises rapidly in the foreside of the coaldust segment and comes down after that.The length of the flame area is about 2 timesthat of the original coal dust accumulation area.Shock wave pressure comes down to therock bottom in the coal dust segment,then reaches the maximum peak rapidly and comesdown.The theoretical basis of the research and assemble of across or explosion is suppliedby the experiment conclusion.Compared with gas explosion,the force and destructiondegree of gas and coal dust explosion is much larger.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No.50574093)the Key Program of the National Natural Science Foundation of China (No.50534090)+3 种基金the National Basic Research and Development Program of China (No.2005CB221506)the National Science Foundation for Young Scholars of China (No.50804048)the National Key Technology R&D Program (No.2007BAK29B01) Research Innovation Program for College Graduates of Jiangsu Provincethe Open Foundation of State Key Laboratory of Explosion Science and Technology (No.KFJJ10-19M)
文摘In order to reveal the effect of turnings on explosion propagation, experiments were performed in three different pipes (single bend, U-shaped pipe and Z-shaped pipe). Flame and pressure transducers were used to track the velocity at the explosion front. When the pipes were filled with methane, the explosion strength was significantly enhanced due to the turbulence induced by increasing the number of turnings, while the flame speed (Sf) and peak overpressure (ΔPmax) increased dramatically. In addition, the strength of the explosion increased in violence as a function of the number of turnings. However, when the bend was without methane, the turnings weakened the strength of the explosion compared with the ordinary pipe, shown by the decrease in the values of ΔPmax and Sf. In addition, the propagation characteristics in a U-shaped pipe were similar to those in a Z-shaped pipe and the values of APmax and Sf were also close. The results show that the explosion propagation characteristics largely depend on gas distribution in the pipes and the number of turnings. The different directions of the turnings had no effect.
基金sponsored by Project 51874313 supported by National Natural Science Foundation of China.
文摘The effects of the number of layers,the arrangement of carbon fiber(CF)tow and the epoxy resin(ER)matrix on the fire performance of carbon fiber/epoxy composites(CFEC)were studied by a variety of experimental methods.The results show that the number of layers of CF tow has influence on the combustion characteristics and fire propagation of the composites.The arrangement of CF tow has influence on flame propagation rate and high temperature mechanicalproperties.The mechanism of the influence of the number of layers of CF tow on the composite is mainly due to the different thermal capacity of ER matrix.The effect of the arrangement of CF tow on the fire performance of the composite is mainly due to the inhibition and obstruction of the tow on the combustion of ER matrix.The influence on the high temperature mechanicalproperties is mainly due to the different arrangement direction of CF tow.The fitting equation of the mechanicalproperties of the samples was obtained.This equation could be used to predict the samples’tensile strength from 25°C to 150℃by comparing with the experimental results.Taking the carbon fiber woven cloth(C)applied in the fuselage material as an example,combining the influencing factors of various parameters in the fire field,some suggestions are put forward combined with the research conclusion.
基金Supported by the National Natural Science Foundation of China (51004048) the Research Fund of State Key Laboratory of Coal Resources and Safe Mining, CUMT(09KF05)+2 种基金 the Post-Doctoral Science Foundation of China (20100470998) the Scientific Research Fund of Hunan Provincial Education Department(09C409) the State Key Base Development Plan(2005cb221506)
文摘The effect of the electric field with different intensity on explosion wave pressure and flame propagation velocity of gas explosion was experimentally studied, and the effect of electric field on gas explosion and its propagation was theoretically analyzed from heat transportation, mass transportation, and reaction process of gas explosion. The results show that the electric field can affect gas explosion by enhancing explosion intensity and explosion pressure, thus increasing flame velocity. The electric field can offer energy to the gas explosion reaction; the effect of the electric field on gas explosion increases with the increase of electric field intensity. The electric field can increase mass transfer action, heat transfer action, convection effects, diffusion coefficient, and the reaction system entropy, which make the turbulence of gas explosion in electric field increase; therefore, the electric field can improve flame combustion velocity and flame propagation velocity, release more energy, increase shock wave energy, and then promote the gas explosion and its propagation.
基金supported by the National Science and Technology Major Project(No.2017-III-0008-0034)。
文摘The structure of the trapped-vortex cavity and radial flameholder can maintain stable combustion under severe conditions,such as sub-atmospheric pressure and high inlet velocity.This article reports a complete study of combustion characteristics for this design.The flow field of the physical model was obtained by numerical simulation.The pilot combustion characteristics,including the combustion process,combustion efficiency,and wall temperature distribution,were studied by experiments.The pilot combustion can be divided into three modes under different fuel flow rates and inlet conditions.In“cavity maintained(CM)”mode,pilot flame exists at both sides of the cavity zone,rotating with the main vortex.In“cavity-flameholder maintained(CFM)”mode,the combustion process occurs both inside the cavity and behind the flameholder.While in“flameholder maintained(FM)”mode,the cavity will quench,and the combustion is maintained by the radial flameholder only.Due to the difference in the flow field,the flame pattern and propagation direction vary under different combustion modes.The combustion efficiency,influenced by combustion modes,shows an increase-decrease-increase curve.The wall temperature distribution is also affected;the cavity wall temperature decreases under large fuel flux while the temperature of the burner-back plate continues to rise to a maximum value.
基金supported by the National Natural Science Foundation of China(No.U20B2034)the Academic Excellence Foundation of Beihang University for PhD Students,China.
文摘This study investigates the end-burning hybrid rocket motors with polyethylene fuel by the numerical simulation and experiment.Based on computational fluid dynamics,a numerical model is developed.The model is validated by two firing tests in this hybrid rocket motor,which uses oxygen and polyethylene as propellants.The results show that the numerical and experimental data are in good agreement,and the error of the chamber pressure is less than 2.63%.Based on the simulation mode,the blowoff limit of the end-burning hybrid rocket motors is investigated.When the nozzle throat diameter and the inner diameter of grain are large,it is more difficult for the hybrid rocket motor to achieve end-burning mode,i.e.,the flame spreading is prevented in the narrow duct.The main reason is that when the nozzle throat and the grain port are large,chamber pressure and oxidizer flow velocity are low.Therefore,the friction velocity considering the pressure and flow velocity is proposed.The critical friction velocity is about 4.054–4.890 m/s in the hybrid rocket motors.When the friction velocity exceeds the critical friction velocity,the combustion mode in hybrid rocket motors changes from the flame spreading mode to the end-burning mode.Moreover,the regression rate formula is obtained by fitting,which shows that the regression rate has a good correlation with combustion chamber pressure.The critical friction velocity and regression rate formula can provide an important reference for end-burning hybrid rocket motors.