In this study, the effects of processing parameters(such as pouring temperature and mould pre-heating temperature) and flame-retardant content on the microstructure and fluidity of sand-cast magnesium(Mg) alloy Mg...In this study, the effects of processing parameters(such as pouring temperature and mould pre-heating temperature) and flame-retardant content on the microstructure and fluidity of sand-cast magnesium(Mg) alloy Mg-10Gd-3Y-0.5Zr(GW103K) were systematically investigated. It was found that the increase of pouring temperature leads to coarsened microstructure and decreased fluidity of sand-cast GW103 K alloy. Increase of mould pre-heating temperature incurs coarsening of as-cast microstructure and increase of fluidity. The addition of flame-retardant into moulding sand has a negligible influence on the microstructure of sand-cast GW103 K alloy. With the increase in flame-retardant content,fluidity of the alloy initially increases and then decreases. The optimized process parameters and flameretardant addition were obtained to be pouring temperature of 750?C, mould temperature of 110?C, and flame-retardant addition of 1%. The fire retardant mechanism of moulding sand was determined.展开更多
基金sponsored by the National Natural Science Foundation of China (No. 51404153)the Shanghai Yang-fan Program (No. 14YF1402000)
文摘In this study, the effects of processing parameters(such as pouring temperature and mould pre-heating temperature) and flame-retardant content on the microstructure and fluidity of sand-cast magnesium(Mg) alloy Mg-10Gd-3Y-0.5Zr(GW103K) were systematically investigated. It was found that the increase of pouring temperature leads to coarsened microstructure and decreased fluidity of sand-cast GW103 K alloy. Increase of mould pre-heating temperature incurs coarsening of as-cast microstructure and increase of fluidity. The addition of flame-retardant into moulding sand has a negligible influence on the microstructure of sand-cast GW103 K alloy. With the increase in flame-retardant content,fluidity of the alloy initially increases and then decreases. The optimized process parameters and flameretardant addition were obtained to be pouring temperature of 750?C, mould temperature of 110?C, and flame-retardant addition of 1%. The fire retardant mechanism of moulding sand was determined.