The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite grow...The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite growth and thermal hazard as the major problems triggering the cycling instability and low safety.With the merit of convenience,the method of designing functional separator has been adapted.Concretely,the carbon aerogel confined with CoS_(2)(CoS_(2)-NCA)is constructed and coated on Celgard separator surface,acquiring CoS_(2)-NCA modified separator(CoS_(2)-NCA@C),which holds the promoted electrolyte affinity and flame retardance.As revealed,CoS_(2)-NCA@C cell gives a high discharge capacity 1536.9 mAh/g at 1st cycle,much higher than that of Celgard cell(987.1 mAh/g).Moreover,the thermal runaway triggering time is dramatically prolonged by 777.4 min,corroborating the promoted thermal safety of cell.Noticeably,the higher coulombic efficiency stability and lower overpotential jointly confirm the efficacy of CoS_(2)-NCA@C in suppressing the lithium dendrite growth.Overall,this work can provide useful inspirations for designing functional separator,coping with the vexing issues of LSBs.展开更多
By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant p...By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA.展开更多
Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of...Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.展开更多
Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p...Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.展开更多
As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,a...As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,as the key criterions for Li-S batteries'practical applications,still attract less attention.Herein,an aqueous multifunction binder(named PEI-TIC)is prepared via an easy and fast epoxy-amine ring-opening reaction(10 min),which can not only give the sulfur cathode a stable mechanical property,a strong chemical adsorption and catalytic conversion ability,but also a fire safety improvement.The Li-S batteries based on the PEI-TIC binder display a high discharge capacity(1297.8 mAh g^(-1)),superior rate performance(823.0 mAh g^(-1)at 2 C),and an ultralow capacity decay rate of 0.035%over more than 800 cycles.Even under 7.1 mg cm^(-2)S-loaded,the PEI-TIC electrode can also achieve a high areal capacity of 7.2 mA h g^(-1)and excellent cycling stability,confirming its application potential.Moreover,it is also noted that TG-FTIR test is performed for the first time to explore the flame-retardant mechanism of polymer binders.This work provides an economically and environmentally friendly binder for the practical application and inspires the exploration of the flame-retardant mechanism of all electrode components.展开更多
Furfurylated wood exhibits excellent dimensional stability and corrosion resistance,making it a promising material for constructing buildings,but it is highly flammable.Herein,flame-retardant furfurylated poplar wood ...Furfurylated wood exhibits excellent dimensional stability and corrosion resistance,making it a promising material for constructing buildings,but it is highly flammable.Herein,flame-retardant furfurylated poplar wood was produced via a two-step process utilizing boric acid(BA)and ammonium dihydrogen phosphate(ADP)as flame-retardant components,and biomass-derived furfuryl alcohol(FA)as a modifier.The acidity of BA and ADP allowed them to catalyze the polymerization of FA,which formed a cross-linked network that immobilized BA and ADP inside the wood.The addition of BA/ADP substantially delayed the time to ignition from 10 to 385 s and reduced the total heat release and total smoke release by 58.75%and 77.31%,respectively.Analysis of the pyrolysis process showed that the decomposition products of BA and ADP protected the underlying furfurylated wood and diluted combustible gases.This method significantly improved the fire retardancy and smokeless properties of furfurylated wood,providing promising prospects for its application as an engineering material.展开更多
Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame reta...Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame retardant agent.A detailed introduction was given to the development of flame retardant coatings in recent years and the flame retardants used in flame retardant coatings.Flame retardants mainly include halogen flame retar-dants,phosphorus nitrogen flame retardants,expansion flame retardants,biomass flame retardants,and graphene flame retardants.The application of flame retardant coatings in the fields of epoxy resin,polyurethane,etc.was elaborated.In addition,the application of new biomass flame retardants and graphene flame retardants was introduced,and the future development of flame retardant coatings and flame retardants was described.展开更多
A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium po...A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium polyphosphate(APP) and silane coupling agent(3-aminopropyl)triethoxysilane(APTES)via cation exchange, which is quite different in the chemical structure from APTES-modified APP for retaining silicon hydroxyls. APTES-APP is highly efficient for the epoxy resin. 8%(mass) APTES-APP imparts excellent flame retardancy to the epoxy resin, with a V-0 rating at the UL-94 test(1.6 mm)and an LOI value of 26%(vol). The peak heat release rate and total smoke production of the flameretardant epoxy resin are decreased by 68.1% and 31.3%, respectively. The synergy of P/N/Si contributes to the well-expanded char residue with a strong and dense surface layer, which is a very good barrier against heat and mass transfer. Besides, there is no significant deterioration in the mechanical properties of flame-retardant epoxy resin thanks to silicon hydroxyls forming hydrogen bonds with epoxy molecules. Meanwhile, other molecules can be grafted onto APTES-APP via these silicon hydroxyls, if needed.Briefly, this work has developed a new strategy for amino silane as flame retardants. In conjunction with a low-cost and simple preparation method, APTES-APP has a promising prospect in the high-performance flame-retardant epoxy.展开更多
Fluorinated electrolytes possess good antioxidant capacity that provides high compatibility to high-voltage cathode and flame retardance;thus,they are considered as a promising solution for advanced lithium-ion batter...Fluorinated electrolytes possess good antioxidant capacity that provides high compatibility to high-voltage cathode and flame retardance;thus,they are considered as a promising solution for advanced lithium-ion batteries carrying both high-energy density and high safety.Moreover,the fluorinated electrolytes are widely used to form stable electrolyte interphase,due to their chemical reactivity with lithiated graphite or lithium.However,the influence of this reactivity on the thermal safety of batteries is seldom discussed.Herein,we demonstrate that the flame-retardant fluorinated electrolytes help to reduce the flammability,while the lithium-ion batteries with flame-retardant fluorinated electrolytes still undergo thermal runaway and disclose their different thermal runaway pathway from that of battery with conventional electrolyte.The reduction in fluorinated components(e.g.,LiPF 6 and fluoroethylene carbonate(FEC))by fully lithiated graphite accounts for a significant heat release during battery thermal runaway.The 13%of total heat is sufficient to trigger the chain reactions during battery thermal runaway.This study deepens the understanding of the thermal runaway mechanism of lithium-ion batteries employing flame-retardant fluorinated electrolytes,providing guidance on the concept of electrolyte design for safer lithium-ion batteries.展开更多
To test the effectiveness of N_(2) and CO_(2) in preventing coal from spontaneously combusting,researchers used an adiabatic oxidation apparatus to conduct an experiment with different temperature starting points.Non-...To test the effectiveness of N_(2) and CO_(2) in preventing coal from spontaneously combusting,researchers used an adiabatic oxidation apparatus to conduct an experiment with different temperature starting points.Non-adsorbed helium(He)was used as a reference gas,and coal and oxygen concentration temperature variations were analyzed after inerting.The results showed that He had the best cooling effect,N_(2) was second,and CO_(2) was the worst.At 70℃and 110℃,the impact of different gases on reducing oxygen concentration and the cooling effect was the same.However,at the starting temperature of 150℃,CO_(2) was less effective in lowering oxygen concentration at the later stage than He and N_(2).N_(2) and CO_(2) can prolong the flame retardation time of inert gas and reduce oxygen displacement with an initial temperature increase.When the starting temperature is the same,N_(2) injection cools coal samples and replaces oxygen more effectively than CO_(2) injection.The flame retardancy of inert gas is the combined result of the cooling effect of inert gas and the replacement of oxygen.These findings are essential for using inert flame retardant technology in the goaf.展开更多
Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate ...Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.展开更多
Cyclotriphosphazene derivatives can effectively improve the flame retardancy and fire safety of epoxy resins(EPs)via their influence on the pyrolysis process.In this work,the effects of hexa(5-methyl-2-pyridinoxyl)cyc...Cyclotriphosphazene derivatives can effectively improve the flame retardancy and fire safety of epoxy resins(EPs)via their influence on the pyrolysis process.In this work,the effects of hexa(5-methyl-2-pyridinoxyl)cyclotriphosphazene(HMPOP)incorporation on the initial pyrolysis of an EP at 500–3500 K were studied using the ReaxFF method.The pyrolysis fragments,initial reaction pathways,and main products were identified for the EP and EP/HMPOP composites.The activation energies were derived by fitting the weight percentage curves for solid species during the pyrolysis reactions and the obtained values were in good agreement with experimental data.The initial EP pyrolysis reactions included four major decomposition modes,which primarily involved the cleavage of C–O and C–N bonds.The main pyrolysis products were H_(2)O,CO,C_(2)H_(4),and CH_(2)O.HMPOP bonded with the oxygen-containing fragments to form larger molecular fragments and reduced the amounts of C_(0)–C_(4) products,especially that of the harmful gas CH_(2)O.Thus,HMPOP promoted the formation of carbon clusters and reduced the generation of combustible gases,ultimately decreasing the capacity for fire propagation.展开更多
As one of the most popular research directions,the application safety of battery technology has attracted more and more attention,researchers in academia and industry are making efforts to develop safer flame retardan...As one of the most popular research directions,the application safety of battery technology has attracted more and more attention,researchers in academia and industry are making efforts to develop safer flame retardant battery.The battery consists of electrolyte,separator,electrode and shell,the traditional flame retardant method of battery is to modify the components to improve its flame safety.In this review,varied types of battery flame retardant technology are initially described,including the type of flame-retardants,flame retardant behaviors and flame retardant mechanisms.Latest research progress of various battery flame retardant technologies is summarized.Typical flame retardant approaches and important properties of flame retardant battery are reviewed as well.In addition,the current main challenges of the battery flame retardant technology in both academics and the industrial are analyzed carefully.In the end,the perspectives for future development of battery flame retardant technology are briefly discussed.展开更多
Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced b...Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced by adding expanded microspheres(EM).Then,the thermal conductivity of the system was improved by combining the modified boron nitride(f-BN).The results showed that after the f-BN was added,the dielectric constant and dielectric loss were much lower than those of pure SR.Micron-sized modified boron nitride(f-mBN)improved the dielectric and thermal conductivity of the SR foam better than that of nano-sized modified boron nitride(f-nBN),but f-nBN improved the volume resistivity,tensile strength,and thermal stability of the SR better than f-mBN.When the mass ratio of f-mBN and fnBN is 2:1,the thermal conductivity of the SR foam reaches the maximum value of 0.808 W·m^(-1)·K^(-1),which is 6.5 times that before the addition.The heat release rate and fire growth index are the lowest,and the improvement in flame retardancy is mainly attributed to the high thermal stability and physical barrier of f-BN.展开更多
A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare...A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.展开更多
The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in mon...The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications.展开更多
Ba^(2+)pre-crosslinked carrageenan fiber(Ba/CAF)was prepared by adding a small amount of Ba^(2+) to the carrageenan(CA)solution as the spinning solution.Ba/CAF-n/A,Ba/CAF-n/B and Ba/CAF-n/C were prepared with ethanol ...Ba^(2+)pre-crosslinked carrageenan fiber(Ba/CAF)was prepared by adding a small amount of Ba^(2+) to the carrageenan(CA)solution as the spinning solution.Ba/CAF-n/A,Ba/CAF-n/B and Ba/CAF-n/C were prepared with ethanol solution(combine A),high concentration BaCl_(2)solution(combine B)and low concentration BaCl_(2)solution(combine C),as coagulation bath and stretch bath,respectively.The combination of coagulation bath and stretch bath suitable for Ba^(2+) pre-crosslinking wet spinning was screened.The results showed that Ba^(2+) can induce the birefringence of the CA molecular chain,and the Ba^(2+) pre-crosslinking effect is the best when the CA mass fraction is 8.0 wt%.From the perspective of production safety,fiber performance and spinning cost,the coagulation bath of 3.5 wt%BaCl_(2)solution and stretch bath of 1.7 wt%BaCl_(2)solution,that is,combination C with low concentration BaCl_(2)solution,is the best choice.Ba/CAF-8.0/C was obtained under the best conditions.The linear intensity,water absorption and flame retardancy study showed that the breaking strength of Ba/CAF-8.0/C is as high as 1.61 cN/dtex,the water absorption was 649.2%and 574.3%,in deionized water and normal saline,respectively,and the LOI value reached 32.展开更多
An attempt was made in the paper aiming at imparting flame retardancy to polymers by plasma grafting technique Based on EVA copolymers with different VA contents the author tried to use the Ar plasma followed by graf...An attempt was made in the paper aiming at imparting flame retardancy to polymers by plasma grafting technique Based on EVA copolymers with different VA contents the author tried to use the Ar plasma followed by grafting with/without subsequent saponification and metal ion exchange expediting the charring of polymers upon heationg Characterization of the flammability of the plasma treated EVA copolymers grafted with acrylic monomers(MAA,AA and AAm)indicates that this approach turns out to be a promising way and worthy doing whatever in research and/or applications展开更多
Polyurethane/polyhedral oligomeric sisesquioxane (PU/POSS) nanocomposites were syn- thesized via polymerization utilizing the compatibility between POSS nanopartieles and 4J-diphenyl methylene diisocyanate. Scanning...Polyurethane/polyhedral oligomeric sisesquioxane (PU/POSS) nanocomposites were syn- thesized via polymerization utilizing the compatibility between POSS nanopartieles and 4J-diphenyl methylene diisocyanate. Scanning electron microscope images and Fourier transform infrared spectra revealed that POSS nanoparticles were dispersed in PU matrix. Thermal gravimetric analysis was employed to investigate the thermal decomposition be- havior of PU/POSS nanocomposites at elevated temperatures. Then fire performance was evaluated by limiting oxygen index, underwriters laboratories 94 testing and char residue morphology. These results showed that the addition of POSS promoted the formation of char residues which were covered on the surface of polymer composites, leading to the ira-provement of thermal stability and flame retardancy.展开更多
PI novel caged bicyclic phosphate flame retardant tri(1-oxo-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane-methyl) phosphate (Trimer) was synthesized from 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octa...PI novel caged bicyclic phosphate flame retardant tri(1-oxo-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane-methyl) phosphate (Trimer) was synthesized from 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) and phosphorus oxychloride in this paper. Its structure was characterized by elemental analysis. FTIR, H-1 NMR. P-31 NMR and X-ray diffraction analysis.展开更多
基金financially supported by the National Natural Science Foundation of China(52104197)Hongkong Scholar Program(XJ2022022)+5 种基金National Science Foundation for Post-doctoral Scientists of China(2021M691549,2021M703082)National Natural Science Foundation of China(52272396,52306090)Jiangsu Provincial Double-Innovation Doctor Program(JSSCBS20210402)Natural Science Foundation of the Jiangsu Higher Education Institutions(21KJB620001)The Open Fund of the State Key Laboratory of Fire Science(SKLFS)Program(HZ2022-KF04)Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX22-0457)。
文摘The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite growth and thermal hazard as the major problems triggering the cycling instability and low safety.With the merit of convenience,the method of designing functional separator has been adapted.Concretely,the carbon aerogel confined with CoS_(2)(CoS_(2)-NCA)is constructed and coated on Celgard separator surface,acquiring CoS_(2)-NCA modified separator(CoS_(2)-NCA@C),which holds the promoted electrolyte affinity and flame retardance.As revealed,CoS_(2)-NCA@C cell gives a high discharge capacity 1536.9 mAh/g at 1st cycle,much higher than that of Celgard cell(987.1 mAh/g).Moreover,the thermal runaway triggering time is dramatically prolonged by 777.4 min,corroborating the promoted thermal safety of cell.Noticeably,the higher coulombic efficiency stability and lower overpotential jointly confirm the efficacy of CoS_(2)-NCA@C in suppressing the lithium dendrite growth.Overall,this work can provide useful inspirations for designing functional separator,coping with the vexing issues of LSBs.
基金Funded by the Natural Science Foundation of Guangdong(Nos.2014A030313241,2014B090901068,and 2016A010103003)。
文摘By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA.
基金Supported by the Opening Project of Hubei Three Gorges Laboratory (No.SK213008)the Innovation Fund of Key Laboratory of Green Chemical Process of Ministry of Education (No.GCXP202109)。
文摘Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.
基金financial support by National Natural Science Foundation(NNSF)of China(Nos.52202269,52002248,U23B2069,22309162)Shenzhen Science and Technology program(No.20220810155330003)+1 种基金Shenzhen Basic Research Project(No.JCYJ20190808163005631)Xiangjiang Lab(22XJ01007).
文摘Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.
基金the support from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(52222314)CNPC Innovation Fund(2021DQ02-1001)+2 种基金Liao Ning Revitalization Talents Program(XLYC1907144)Xinghai Talent Cultivation Plan(X20200303)Fundamental Research Funds for the Central Universities(DUT22JC02,DUT22LAB605)
文摘As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,as the key criterions for Li-S batteries'practical applications,still attract less attention.Herein,an aqueous multifunction binder(named PEI-TIC)is prepared via an easy and fast epoxy-amine ring-opening reaction(10 min),which can not only give the sulfur cathode a stable mechanical property,a strong chemical adsorption and catalytic conversion ability,but also a fire safety improvement.The Li-S batteries based on the PEI-TIC binder display a high discharge capacity(1297.8 mAh g^(-1)),superior rate performance(823.0 mAh g^(-1)at 2 C),and an ultralow capacity decay rate of 0.035%over more than 800 cycles.Even under 7.1 mg cm^(-2)S-loaded,the PEI-TIC electrode can also achieve a high areal capacity of 7.2 mA h g^(-1)and excellent cycling stability,confirming its application potential.Moreover,it is also noted that TG-FTIR test is performed for the first time to explore the flame-retardant mechanism of polymer binders.This work provides an economically and environmentally friendly binder for the practical application and inspires the exploration of the flame-retardant mechanism of all electrode components.
基金financially supported by the Key Research and Development Program of Hunan Province,China(2023NK2038)National Natural Science Foundation of China(32201485)+2 种基金Natural Science Foundation of Hunan Province,China(2022JJ40863,2023JJ60161)Scientific Research Project of Hunan Provincial Education Department,China(21B0238,22A0177)Hunan Provincial Technical Innovation Platform and Talent Program in Science and Technology,China(2023RC3159).
文摘Furfurylated wood exhibits excellent dimensional stability and corrosion resistance,making it a promising material for constructing buildings,but it is highly flammable.Herein,flame-retardant furfurylated poplar wood was produced via a two-step process utilizing boric acid(BA)and ammonium dihydrogen phosphate(ADP)as flame-retardant components,and biomass-derived furfuryl alcohol(FA)as a modifier.The acidity of BA and ADP allowed them to catalyze the polymerization of FA,which formed a cross-linked network that immobilized BA and ADP inside the wood.The addition of BA/ADP substantially delayed the time to ignition from 10 to 385 s and reduced the total heat release and total smoke release by 58.75%and 77.31%,respectively.Analysis of the pyrolysis process showed that the decomposition products of BA and ADP protected the underlying furfurylated wood and diluted combustible gases.This method significantly improved the fire retardancy and smokeless properties of furfurylated wood,providing promising prospects for its application as an engineering material.
文摘Flame retardant coatings are functional materials that can serve as decorative and protec-tive substrates in the event of a fire.Flame retardant coatings generally consist of two parts:a base material and a flame retardant agent.A detailed introduction was given to the development of flame retardant coatings in recent years and the flame retardants used in flame retardant coatings.Flame retardants mainly include halogen flame retar-dants,phosphorus nitrogen flame retardants,expansion flame retardants,biomass flame retardants,and graphene flame retardants.The application of flame retardant coatings in the fields of epoxy resin,polyurethane,etc.was elaborated.In addition,the application of new biomass flame retardants and graphene flame retardants was introduced,and the future development of flame retardant coatings and flame retardants was described.
基金financially supported by the National Natural Science Foundation of China (22178242)。
文摘A flame retardant containing multiple antiflaming elements usually exhibits high-efficient flame retardancy. Here, a novel P/N/Si-containing ammonium polyphosphate derivative(APTES-APP) is synthesized from ammonium polyphosphate(APP) and silane coupling agent(3-aminopropyl)triethoxysilane(APTES)via cation exchange, which is quite different in the chemical structure from APTES-modified APP for retaining silicon hydroxyls. APTES-APP is highly efficient for the epoxy resin. 8%(mass) APTES-APP imparts excellent flame retardancy to the epoxy resin, with a V-0 rating at the UL-94 test(1.6 mm)and an LOI value of 26%(vol). The peak heat release rate and total smoke production of the flameretardant epoxy resin are decreased by 68.1% and 31.3%, respectively. The synergy of P/N/Si contributes to the well-expanded char residue with a strong and dense surface layer, which is a very good barrier against heat and mass transfer. Besides, there is no significant deterioration in the mechanical properties of flame-retardant epoxy resin thanks to silicon hydroxyls forming hydrogen bonds with epoxy molecules. Meanwhile, other molecules can be grafted onto APTES-APP via these silicon hydroxyls, if needed.Briefly, this work has developed a new strategy for amino silane as flame retardants. In conjunction with a low-cost and simple preparation method, APTES-APP has a promising prospect in the high-performance flame-retardant epoxy.
基金This work is funded by National Natural Science Foundation of China(Grant No.52006115)Ministry of Science and Technology of China(Grant No.2019YFE0100200)+3 种基金National Natural Science Foundation of China(Grant No.52076121)China National Postdoctoral Program for Innovative Talents(Grant No.BX20190162)China Postdoctoral Science Foundation(Grant No.2019M660631)the Tsinghua University Initiative Scientific Research Program(Grant No.2019Z02UTY06).
文摘Fluorinated electrolytes possess good antioxidant capacity that provides high compatibility to high-voltage cathode and flame retardance;thus,they are considered as a promising solution for advanced lithium-ion batteries carrying both high-energy density and high safety.Moreover,the fluorinated electrolytes are widely used to form stable electrolyte interphase,due to their chemical reactivity with lithiated graphite or lithium.However,the influence of this reactivity on the thermal safety of batteries is seldom discussed.Herein,we demonstrate that the flame-retardant fluorinated electrolytes help to reduce the flammability,while the lithium-ion batteries with flame-retardant fluorinated electrolytes still undergo thermal runaway and disclose their different thermal runaway pathway from that of battery with conventional electrolyte.The reduction in fluorinated components(e.g.,LiPF 6 and fluoroethylene carbonate(FEC))by fully lithiated graphite accounts for a significant heat release during battery thermal runaway.The 13%of total heat is sufficient to trigger the chain reactions during battery thermal runaway.This study deepens the understanding of the thermal runaway mechanism of lithium-ion batteries employing flame-retardant fluorinated electrolytes,providing guidance on the concept of electrolyte design for safer lithium-ion batteries.
基金support was received from the National Natural Science Foundation of China(52074156).
文摘To test the effectiveness of N_(2) and CO_(2) in preventing coal from spontaneously combusting,researchers used an adiabatic oxidation apparatus to conduct an experiment with different temperature starting points.Non-adsorbed helium(He)was used as a reference gas,and coal and oxygen concentration temperature variations were analyzed after inerting.The results showed that He had the best cooling effect,N_(2) was second,and CO_(2) was the worst.At 70℃and 110℃,the impact of different gases on reducing oxygen concentration and the cooling effect was the same.However,at the starting temperature of 150℃,CO_(2) was less effective in lowering oxygen concentration at the later stage than He and N_(2).N_(2) and CO_(2) can prolong the flame retardation time of inert gas and reduce oxygen displacement with an initial temperature increase.When the starting temperature is the same,N_(2) injection cools coal samples and replaces oxygen more effectively than CO_(2) injection.The flame retardancy of inert gas is the combined result of the cooling effect of inert gas and the replacement of oxygen.These findings are essential for using inert flame retardant technology in the goaf.
基金the National Natural Science Foundation of China (No.51673059)the Science and Technology Planning Project of Henan Province (No. 212102210636)the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices (East China University of Technology)。
文摘Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.
基金the National Natural Science Foundation of China(51901209).
文摘Cyclotriphosphazene derivatives can effectively improve the flame retardancy and fire safety of epoxy resins(EPs)via their influence on the pyrolysis process.In this work,the effects of hexa(5-methyl-2-pyridinoxyl)cyclotriphosphazene(HMPOP)incorporation on the initial pyrolysis of an EP at 500–3500 K were studied using the ReaxFF method.The pyrolysis fragments,initial reaction pathways,and main products were identified for the EP and EP/HMPOP composites.The activation energies were derived by fitting the weight percentage curves for solid species during the pyrolysis reactions and the obtained values were in good agreement with experimental data.The initial EP pyrolysis reactions included four major decomposition modes,which primarily involved the cleavage of C–O and C–N bonds.The main pyrolysis products were H_(2)O,CO,C_(2)H_(4),and CH_(2)O.HMPOP bonded with the oxygen-containing fragments to form larger molecular fragments and reduced the amounts of C_(0)–C_(4) products,especially that of the harmful gas CH_(2)O.Thus,HMPOP promoted the formation of carbon clusters and reduced the generation of combustible gases,ultimately decreasing the capacity for fire propagation.
基金supported by the“Jie Bang Gua Shuai”of Science and technology Projects of Liaoning Province in 2021,grant number 2021JH1/10400091Liao Ning Revitalization Talents Program,grant number XLYC2005002+2 种基金Liaoning BaiQianWan Talents Program,grant number[2020]78Scientific Research Funding Project of the Educational Department of Liaoning Province in 2020,grant number LZ2020002Shenyang Science and Technology Program-Major Key Core Technology Project,grant number 20-202-1-15.
文摘As one of the most popular research directions,the application safety of battery technology has attracted more and more attention,researchers in academia and industry are making efforts to develop safer flame retardant battery.The battery consists of electrolyte,separator,electrode and shell,the traditional flame retardant method of battery is to modify the components to improve its flame safety.In this review,varied types of battery flame retardant technology are initially described,including the type of flame-retardants,flame retardant behaviors and flame retardant mechanisms.Latest research progress of various battery flame retardant technologies is summarized.Typical flame retardant approaches and important properties of flame retardant battery are reviewed as well.In addition,the current main challenges of the battery flame retardant technology in both academics and the industrial are analyzed carefully.In the end,the perspectives for future development of battery flame retardant technology are briefly discussed.
基金supported by the Natural Science Foundation of Anhui Province(2108085QE211)National Natural Science Foundation of China(22205229)Science Foundation of China University of Petroleum,Beijing(2462024QNXZ001).
文摘Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced by adding expanded microspheres(EM).Then,the thermal conductivity of the system was improved by combining the modified boron nitride(f-BN).The results showed that after the f-BN was added,the dielectric constant and dielectric loss were much lower than those of pure SR.Micron-sized modified boron nitride(f-mBN)improved the dielectric and thermal conductivity of the SR foam better than that of nano-sized modified boron nitride(f-nBN),but f-nBN improved the volume resistivity,tensile strength,and thermal stability of the SR better than f-mBN.When the mass ratio of f-mBN and fnBN is 2:1,the thermal conductivity of the SR foam reaches the maximum value of 0.808 W·m^(-1)·K^(-1),which is 6.5 times that before the addition.The heat release rate and fire growth index are the lowest,and the improvement in flame retardancy is mainly attributed to the high thermal stability and physical barrier of f-BN.
基金financially supported from the National Natural Science Foundation of China(No.U23A20605)the University Synergy Innovation Program of Anhui Province,China(No.GXXT-2020-072)+2 种基金Anhui Jieqing Project,China(No.2208085J19)Anhui Graduate Innovation and Entrepreneurship Practice Project,China(No.2022cxcysj090)China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202202).
文摘A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.
基金supported by the National Natural Science Foundation of China(No.52104265)。
文摘The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications.
基金supported by the Program of the National Natural Science Foundation of China(52173037)Natural Science Foundation of Shandong Province(ZR2020ME061)+1 种基金State Key Laboratory of Bio-Fibers and Eco-Textiles of Qingdao University(ZFT201810,ZKT17,TSKT202107)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT14R30).
文摘Ba^(2+)pre-crosslinked carrageenan fiber(Ba/CAF)was prepared by adding a small amount of Ba^(2+) to the carrageenan(CA)solution as the spinning solution.Ba/CAF-n/A,Ba/CAF-n/B and Ba/CAF-n/C were prepared with ethanol solution(combine A),high concentration BaCl_(2)solution(combine B)and low concentration BaCl_(2)solution(combine C),as coagulation bath and stretch bath,respectively.The combination of coagulation bath and stretch bath suitable for Ba^(2+) pre-crosslinking wet spinning was screened.The results showed that Ba^(2+) can induce the birefringence of the CA molecular chain,and the Ba^(2+) pre-crosslinking effect is the best when the CA mass fraction is 8.0 wt%.From the perspective of production safety,fiber performance and spinning cost,the coagulation bath of 3.5 wt%BaCl_(2)solution and stretch bath of 1.7 wt%BaCl_(2)solution,that is,combination C with low concentration BaCl_(2)solution,is the best choice.Ba/CAF-8.0/C was obtained under the best conditions.The linear intensity,water absorption and flame retardancy study showed that the breaking strength of Ba/CAF-8.0/C is as high as 1.61 cN/dtex,the water absorption was 649.2%and 574.3%,in deionized water and normal saline,respectively,and the LOI value reached 32.
文摘An attempt was made in the paper aiming at imparting flame retardancy to polymers by plasma grafting technique Based on EVA copolymers with different VA contents the author tried to use the Ar plasma followed by grafting with/without subsequent saponification and metal ion exchange expediting the charring of polymers upon heationg Characterization of the flammability of the plasma treated EVA copolymers grafted with acrylic monomers(MAA,AA and AAm)indicates that this approach turns out to be a promising way and worthy doing whatever in research and/or applications
文摘Polyurethane/polyhedral oligomeric sisesquioxane (PU/POSS) nanocomposites were syn- thesized via polymerization utilizing the compatibility between POSS nanopartieles and 4J-diphenyl methylene diisocyanate. Scanning electron microscope images and Fourier transform infrared spectra revealed that POSS nanoparticles were dispersed in PU matrix. Thermal gravimetric analysis was employed to investigate the thermal decomposition be- havior of PU/POSS nanocomposites at elevated temperatures. Then fire performance was evaluated by limiting oxygen index, underwriters laboratories 94 testing and char residue morphology. These results showed that the addition of POSS promoted the formation of char residues which were covered on the surface of polymer composites, leading to the ira-provement of thermal stability and flame retardancy.
文摘PI novel caged bicyclic phosphate flame retardant tri(1-oxo-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane-methyl) phosphate (Trimer) was synthesized from 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) and phosphorus oxychloride in this paper. Its structure was characterized by elemental analysis. FTIR, H-1 NMR. P-31 NMR and X-ray diffraction analysis.