Large eddy simulations(LESs) are performed to investigate the Cambridge premixed and stratified flames, SwB1 and SwB5, respectively. The flame surface density(FSD) model incorporated with two different wrinkling facto...Large eddy simulations(LESs) are performed to investigate the Cambridge premixed and stratified flames, SwB1 and SwB5, respectively. The flame surface density(FSD) model incorporated with two different wrinkling factor models, i.e., the Muppala and Charlette2 wrinkling factor models, is used to describe combustion/turbulence interaction, and the flamelet generated manifolds(FGM) method is employed to determine major scalars. This coupled sub-grid scale(SGS) combustion model is named as the FSD-FGM model. The FGM method can provide the detailed species in the flame which cannot be obtained from the origin FSD model. The LES results show that the FSD-FGM model has the ability of describing flame propagation, especially for stratified flames. The Charlette2 wrinkling factor model performs better than the Muppala wrinkling factor model in predicting the flame surface area change by the turbulence.The combustion characteristics are analyzed in detail by the flame index and probability distributions of the equivalence ratio and the orientation angle, which confirms that for the investigated stratified flame, the dominant combustion modes in the upstream and downstream regions are the premixed mode and the back-supported mode, respectively.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.91441117 and51576182)
文摘Large eddy simulations(LESs) are performed to investigate the Cambridge premixed and stratified flames, SwB1 and SwB5, respectively. The flame surface density(FSD) model incorporated with two different wrinkling factor models, i.e., the Muppala and Charlette2 wrinkling factor models, is used to describe combustion/turbulence interaction, and the flamelet generated manifolds(FGM) method is employed to determine major scalars. This coupled sub-grid scale(SGS) combustion model is named as the FSD-FGM model. The FGM method can provide the detailed species in the flame which cannot be obtained from the origin FSD model. The LES results show that the FSD-FGM model has the ability of describing flame propagation, especially for stratified flames. The Charlette2 wrinkling factor model performs better than the Muppala wrinkling factor model in predicting the flame surface area change by the turbulence.The combustion characteristics are analyzed in detail by the flame index and probability distributions of the equivalence ratio and the orientation angle, which confirms that for the investigated stratified flame, the dominant combustion modes in the upstream and downstream regions are the premixed mode and the back-supported mode, respectively.