Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transiti...Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transition metal substitution to reduce the Co content.However,the traditional coprecipitation method cannot satisfy the requirements of multielement coprecipitation and uniform distribution of elements due to the differences between element concentration and deposition rate.In this work,spray pyrolysis was used to prepare LiNi_(0.9)Co_(0.1-x)W_(x)O_(2)(LNCW).In this regard,the pyrolysis behavior of ammonium metatungstate was analyzed,together with the substitu-tion of W for Co.With the possibility of spray pyrolysis,the Ni-Co-W-containing oxide precursor presents a homogeneous distribution of metal elements,which is beneficial for the uniform substitution of W in the final materials.It was observed that with W substitution,the size of primary particles decreased from 338.06 to 71.76 nm,and cation disordering was as low as 3.34%.As a consequence,the pre-pared LNCW exhibited significantly improved electrochemical performance.Under optimal conditions,the lithium-ion battery assembled with LiNi_(0.9)Co_(0.0925)W_(0.0075)O_(2)(LNCW-0.75mol%)had an improved capacity retention of 82.7%after 200 cycles,which provides insight in-to the development of Ni-rich low-Co materials.This work presents that W can compensate for the loss caused by Co deficiency to a cer-tain extent.展开更多
Boron-doped NiO thin films were prepared on glass substrates at 400℃ by airbrush spraying method using a solution of nickel nitrate hexahydrate. Their physical properties were investigated as a function of dopant con...Boron-doped NiO thin films were prepared on glass substrates at 400℃ by airbrush spraying method using a solution of nickel nitrate hexahydrate. Their physical properties were investigated as a function of dopant concentration. From X-ray diffraction patterns, it is observed that the films have cubic structure with lattice parameters varying with boron concentration. The morphologies of the films were examined by using scanning electron microscopy, and the grain sizes were measured to be around 30-50 nm. Optical measurements show that the band gap energies of the films first decrease then increase with increasing boron concentration. The resistivities of the films were determined by four point probe method, and the changes in resistivity with boron concentration were investigated.展开更多
Spherical YAG:Ce^3+ phosphor particles with narrow size distribution were prepared by spray pyrolysis. The effects of the concentration of solution, the flow rate of cartier gas and the annexing temperature on the p...Spherical YAG:Ce^3+ phosphor particles with narrow size distribution were prepared by spray pyrolysis. The effects of the concentration of solution, the flow rate of cartier gas and the annexing temperature on the phosphor morphology were studied. The productivity of precursor particles shows a trend of drop after rising with the increase of concentration Raising the flow rate of nitrogen can improve the productivity of the precursor particles. Phosphor prepared by spray pyrolysis has obviously higher emission intensity than that synthesized by solid state reaction, spray pyrolysis makes Ce^3+ ions well distributed in the crystal lattice as the luminescent centers, and phosphor particles have regular sphericity and narrow size distribution.展开更多
ZnO nanoparticles and porous particles were produced by an ultrasonic spray pyrolysis method using a zinc nitrate precursor at various temperatures under air atmosphere. The effects of reaction temperature on the size...ZnO nanoparticles and porous particles were produced by an ultrasonic spray pyrolysis method using a zinc nitrate precursor at various temperatures under air atmosphere. The effects of reaction temperature on the size and morphology of ZnO particles were investi- gated. The samples were characterized by energy dispersive spectroscopy, X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. ZnO particles were obtained in a hexagonal crystal structure and the crystallite shapes changed from spherical to hex- agonal by elevating the reaction temperature. The crystallite size grew by increasing the temperature, in spite of reducing the residence time in the heated zone. ZnO nanoparticles were obtained at the lowest reaction temperature and ZnO porous particles, formed by aggregation of ZnO nanoparticles due to effective sintering, were prepared at higher temperatures. The results showed that the properties of ZnO particles can be controlled by changing the reaction temperature in the ultrasonic spray pyrolysis method.展开更多
In this study we report a series of nickel-rich layered cathodes LiNi1-2xCoxMnxO2(x = 0.075, 0.05,0.025) prepared from chlorides solution via ultrasonic spray pyrolysis. SEM images illustrate that the samples are su...In this study we report a series of nickel-rich layered cathodes LiNi1-2xCoxMnxO2(x = 0.075, 0.05,0.025) prepared from chlorides solution via ultrasonic spray pyrolysis. SEM images illustrate that the samples are submicron-sized particles and the particle sizes increase with the increase of Ni content.LiNi0.85Co0.075Mn0.075O2 delivers a discharge capacity of 174.9 mAh g-1 with holding 93% reversible capacity at 1 C after 80 cycles, and can maintain a discharge capacity of 175.3 mAh g-1 at 5 C rate. With increasing Ni content, the initial specific capacity increases while the cycling and rate performance degrades in some extent. These satisfying results demonstrate that spray pyrolysis is a powerful and efficient synthesis technology for producing Ni-rich layered cathode(Ni content 〉 80%).展开更多
In this study,Tungsten Oxide(WO_3)thin films were prepared by Chemical Spray Pyrolysis(CSP)and Spin Coating(SC)techniques and it was investigated effects of technique and parameter on the films.WO_3 thin films were de...In this study,Tungsten Oxide(WO_3)thin films were prepared by Chemical Spray Pyrolysis(CSP)and Spin Coating(SC)techniques and it was investigated effects of technique and parameter on the films.WO_3 thin films were deposited on ITO(Indium Tin Oxide)coated glasses.The structural,optical and electrochromic properties of the WO_3 thin films were characterized by XRD,SEM,UV,and CV measurements.The sharpest(200)peak was observed in the XRD spectra and optical band gaps were calculated around 2.6~3.1 eVvia UV-Vis spectra for all of the samples.Micro fibrous reticulated surface(filamentous like)morphology for the films deposited by CSP technique and smooth surface morphology with high optical transmittance for the film deposited by SC Technique were obtained from SEM images.In addition to these results,it was revealed that all the samples exhibit good electrochromic performance.展开更多
Silver powder was fabricated by spray pyrolysis, using 2%-20% AgNO3 solution, 336-500 mL/h flux of AgNO3 solution, 0.28-0.32 MPa flux of carrier gas and in the 620-820 ℃ temperature range. The effects of furnace set ...Silver powder was fabricated by spray pyrolysis, using 2%-20% AgNO3 solution, 336-500 mL/h flux of AgNO3 solution, 0.28-0.32 MPa flux of carrier gas and in the 620-820 ℃ temperature range. The effects of furnace set temperature, concentration of AgNO3 aqueous solution, flux of AgNO3 aqueous solution as well as carrier gas on the morphology and particle size distribution of silver powder, were investigated. The experimental results showed that with the high concentration of AgNO3 aqueous solution, the average grain size of silver decreased with the increasing of furnace set temperature. But the gain size distribution was not homogenous, the discontinuous grain growth occurred. With the low concentration of AgNO3 aqueous solution, the higher furnace set temperature made the nano sliver grains sintered together to grow. Nano silver powder about 100 nm was fabricated by spray pyrolysis, using 2wt% AgNO3 solutions, 336 mL/h flux of AgNO3 aqueous solution, 0.32 MPa flux of carrier gas at 720 ℃ furnace set temperature.展开更多
The retarded kinetics of oxygen evolution on electrodes is a bottleneck for electrochemical energy conversion and storage systems.NiFe-based electrocatalysts provide a cost-effective choice to confront this challenge....The retarded kinetics of oxygen evolution on electrodes is a bottleneck for electrochemical energy conversion and storage systems.NiFe-based electrocatalysts provide a cost-effective choice to confront this challenge.However,there is a lack of facile techniques for depositing compact catalytic films of high coverage and possessing a state-of-the-art performance,which is especially desired in photoelectrochemical(PEC)systems.Herein,we demonstrate a spray pyrolysis(SP)route to address this issue,featuring the kinetic selective preparation towards the desired catalytic-active material.Differing from reported SP protocols which only produce inactive oxides,this approach directly generates a unique composite film consisting of NiFe layered oxyhydroxides and amorphous oxides,exhibiting an overpotential as small as 255 mV(10 mA cm^(−2))and a turnover frequency of∼0.4 s^(−1)per metal atom.By using such a facile protocol,the surface rate-limiting issue of BiVO_(4)photoanodes can be effectively resolved,resulting in a charge injection efficiency of over 90%.Considering this deposition directly start from simple nitrates but only takes several seconds to complete,we believe it can be developed as a widely applicable and welcomed functionalization technique for diverse electrochemical devices.展开更多
With citric acid as a polymeric agent layered LiNi0.8Co0.2O2 materials were synthesized by a spray pyrolysis method. The LiNi0.sCo0.2O2 particles were characterized by means of XRD, SEM and TEM. The electrochemical pe...With citric acid as a polymeric agent layered LiNi0.8Co0.2O2 materials were synthesized by a spray pyrolysis method. The LiNi0.sCo0.2O2 particles were characterized by means of XRD, SEM and TEM. The electrochemical performances of LiNi0.8Co0.2O2 particles were studied in a voltage window of 3.00-4.35 V and at a current density of 30 mA/g. The results show that in the pilot-scale spray pyrolysis process, the morphology of particles is dependent upon the precursor concentration and flux of carrier gas. The initial discharge capacity of the LiNi0.8Co0.2O2particles at 720 ℃ for 12 h is 187.3 mA.h/g, and the capacity remains 96.8% with excellent cycleability after 30 cycles. The LiNi0.8Co0.2O2 samples synthesized under the optimized conditions by the spray pyrolysis method shows a good electrochemical performance.展开更多
The deposition of metal oxide films using Spray Pyrolysis Technique (SPT) is investigated through mathematical and physical modeling. A comprehensive model is developed in the processes including atomization, spray, e...The deposition of metal oxide films using Spray Pyrolysis Technique (SPT) is investigated through mathematical and physical modeling. A comprehensive model is developed in the processes including atomization, spray, evaporation, chemical reaction and deposition. The predicted results including particle size and film thickness are compared with the experimental data obtained in a complementary study. The predicted film thickness is in a good agreement with the measurements when the temperature is high enough for the chemical reaction to proceed. The model also adequately predicts the size distribution when the nanocrystals are well-structured at controlled temperature and concentration.展开更多
A study of the phase transitions in superconducting thin films of the Thallium-Barium-Calcium-Copper (TBCCO) system is carried out. In particular, it was got the Tl-1223 phase. For this purpose, and using the ultrason...A study of the phase transitions in superconducting thin films of the Thallium-Barium-Calcium-Copper (TBCCO) system is carried out. In particular, it was got the Tl-1223 phase. For this purpose, and using the ultrasonic spray pyrolysis technique, Barium-Calcium-Copper precursor films were first obtained. Upon deposition of the precursor films, and as a second step, they were thallium (Tl) diffused in the one-zone furnace at 860°C. This methodology resulted in superconducting films that showed a phase transition as follows: Tl-2223 → Tl-2223 + Tl-2212 → Tl-2212 → Tl-1223, achieved between 2 and 7 hours of thallium diffusion. The evidence of the phase transitions was corroborated by the experimental results of X-ray diffraction, energy dispersive spectroscopy and resistance-temperature measurements.展开更多
Nickel oxide (NiO) thin film has been deposited on a glass substrate at a temperature of 390°C ± 10°C using a simple and inexpensive spray pyrolysis technique. Nickel nitrate salt solution (Ni(NO3)2&...Nickel oxide (NiO) thin film has been deposited on a glass substrate at a temperature of 390°C ± 10°C using a simple and inexpensive spray pyrolysis technique. Nickel nitrate salt solution (Ni(NO3)2·6H2O) was employed to prepare the films and the film thickness was in order of 200 ± 5 nm. The structural, optical and electrical properties of NiO films were investigated using X-ray diffraction (XRD), visible spectrum, DC conductivity and Seebeck effect measurements. The results show that X-ray diffraction techniques have shown that prepared film is polycrystalline structure type cubic phase. The measurements of optical properties (transmittance (T) and absorbance (A)) of NiO films show that higher transmittance is 37.4% within the wavelength range (300 - 900 nm). Also the results have shown that the higher absorbance is 77.7%. The results of electrical properties have shown that at room temperature electrical conductivity is 1.3 × 10-5 (Ω·cm)-1, and also results have shown that all the films are of p-type due to the negative Seebeck coefficient.展开更多
Titanium dioxide thin films were deposited on (0001) α-quartz substrate by spray pyrolysis method. The method which an aerosol of Titanium Butoxide, generated ultrasonically, was sprayed on the substrate at temperatu...Titanium dioxide thin films were deposited on (0001) α-quartz substrate by spray pyrolysis method. The method which an aerosol of Titanium Butoxide, generated ultrasonically, was sprayed on the substrate at temperature of 400°C, kept at this temperature for periods of 3, 13, 19 and 39 hours. The developed films at a crystal phase correspond to the TiO2 anatase and rutile phases. Their surface roughness increased by annealing the samples at 600, 800 and 1000°C. Deposited film annealed at 1000°C showed preferable orientation in (110) direction. The crystal evolution and crystallographic properties of this material was studied by Lotgering method, X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The study revealed that the deposition process was nearly close to the classical Chemical Vapour Deposition (CVD) technique that is generally employed to produce films with smooth surface and good crystalline properties with a thickness of about 1 μm, as measured by Focused Ion Beam.展开更多
Cu-Zn-S (CZS) films were deposited by the spray pyrolysis method. As-deposited CZS film showed a low crystallinity. The resistivity of CZS film with Cu/(Cu+Zn) ratio of 50% is around 10-2Ω﹒cm. The CZS film elements ...Cu-Zn-S (CZS) films were deposited by the spray pyrolysis method. As-deposited CZS film showed a low crystallinity. The resistivity of CZS film with Cu/(Cu+Zn) ratio of 50% is around 10-2Ω﹒cm. The CZS film elements using spray Cu-Zn (=1:1) solution with thiourea was confirmed as? Cu:Zn:Sn=2:2:3 by ICP-MS and EDX. The band gap of CZS films was varied in the range of 1.8 - 3.5 ev when the? Cu/(Cu+Zn)ratio was increased from 0 to 67%;CZS film with Cu/(Cu+Zn)ratio of 50 % showed an wide band gap of 2 eV. The photovoltaic characteristics were confirmed with cell structure of . The best cell was observed at the CZS films with Cu/(Cu+Zn)ratio of 50%;these cells depicted a conversion efficiency of 1.7%.展开更多
Using CaCO3, metal oxides (all dissolved by nitric acid) and tetraethoxysilane Si (OC2H5 )4 (TEOS) as the main starting materials, Ca2Y8 (SiO4 )6O2: Eu3+ phosphors were synthesized by spray pyrolysis.X-ray diffraction...Using CaCO3, metal oxides (all dissolved by nitric acid) and tetraethoxysilane Si (OC2H5 )4 (TEOS) as the main starting materials, Ca2Y8 (SiO4 )6O2: Eu3+ phosphors were synthesized by spray pyrolysis.X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting phosphors.The results of XRD indicated that the 1000 ℃ annealed powders crystallize with the silicate oxyapatite structure.SEM study revealed that the phosphors consist of spherical particles with an average size of about 1 ~ 3 μm.In the crystalline Ca2 Y8 (SiO4)6O2: Eu3+ phosphor, the Eu3+ shows its characteristic emission corresponding to 5 D0 - 7 FJ ( J = 0, 1,2, 3, 4) transitions, with 5D0 - 7 F2 red emission (613 nm) as the most prominent group, agreeing well with the structure of the host material.展开更多
The phase evolution of Bi-2223 precursor powder prepared by spray pyrolysis method is studied with different heat treatment parameters. The results show that the reaction temperature and phase composition of precursor...The phase evolution of Bi-2223 precursor powder prepared by spray pyrolysis method is studied with different heat treatment parameters. The results show that the reaction temperature and phase composition of precursor powder depend on heat treatment atmosphere. Phase assemblage of(Bi,Pb)-2212, AEC, CuO, and small Bi-2201 can be obtained by heat-treated in N2-0.1%O_2 atmosphere. For precursor powder, there is sufficient reaction process at 770℃, and the dimension of Bi-2212 phase increases rapidly with the increase of heat treatment temperature and time. The dimension of AEC phase also increases by extending heat treatment time. As a balance among phase assemblage, dimension of particle and adequate reaction, a reasonable precursor powder can be obtained by heat-treated at 770℃ for 12 h–16 h in N2-0.1%O_2 atmosphere. Critical current of 37-filament Bi-2223 tape is about 120 A, which confirms that these heat treatment parameters are reasonable.展开更多
Fluorine doped tin oxide, SnO2:F, thin films were deposited by ultrasonic chemical spray starting from tin chloride and hydrofluoric acid. The physical characteristics of the films as a function of both water content ...Fluorine doped tin oxide, SnO2:F, thin films were deposited by ultrasonic chemical spray starting from tin chloride and hydrofluoric acid. The physical characteristics of the films as a function of both water content in the starting solution and substrate temperature were studied. The film structure was polycrystalline in all cases, showing that the intensity of (200) peak increased with the water content in the starting solution. The electrical resistivity decreased with the water content, reaching a minimum value, in the order of 8 × 10-4 Ωcm, for films deposited at 450℃ from a starting solution with a water content of 10 ml per 100 ml of solution;further increase in water content increased the corresponding resistivity. Optical transmittances of SnO2:F films were high, in the order of 75%, and the band gap values oscillated around 3.9 eV. SEM analysis showed uniform surface morphologies with different geometries depending on the deposition conditions. Composition analysis showed a stoichiometric compound with a [Sn/O] ratio around 1:2 in all samples. The presence of F into the SnO2 lattice was detected, within 2 at % respect to Sn.展开更多
The Pr and Ta separately doped FTO(10 at.% F incorporated Sn O2) films are fabricated via spray pyrolysis. The microstructural, topographic, optical, and electrical features of fluorine-doped TO(FTO) films are inv...The Pr and Ta separately doped FTO(10 at.% F incorporated Sn O2) films are fabricated via spray pyrolysis. The microstructural, topographic, optical, and electrical features of fluorine-doped TO(FTO) films are investigated as functions of Pr and Ta dopant concentrations. The x-ray diffraction(XRD) measurements reveal that all deposited films show polycrystalline tin oxide crystal property. FTO film has(200) preferential orientation, but this orientation changes to(211) direction with Pr and Ta doping ratio increasing. Atomic force microscopy(AFM) and scanning electron microscopy(SEM) analyses show that all films have uniform and homogenous nanoparticle distributions. Furthermore, morphologies of the films depend on the ratio between Pr and Ta dopants. From ultraviolet-visible(UV-Vis) spectrophotometer measurements, it is shown that the transmittance value of FTO film decreases with Pr and Ta doping elements increasing. The band gap value of FTO film increases only at 1 at.% Ta doping level, it drops off with Pr and Ta doping ratio increasing at other doped FTO films. The electrical measurements indicate that the sheet resistance value of FTO film initially decreases with Pr and Ta doping ratio decreasing and then it increases with Pr and Ta doping ratio increasing. The highest value of figure of merit is obtained for 1 at.% Ta- and Pr-doped FTO film. These results suggest that Pr- and Ta-doped FTO films may be appealing candidates for TCO applications.展开更多
Highly transparent conductive stoichiometric nanocrystalline stannic oxide coatings were deposited onto Corning®EAGLE XG®slim glass substrates.Including each coating,it was deposited for various concentratio...Highly transparent conductive stoichiometric nanocrystalline stannic oxide coatings were deposited onto Corning®EAGLE XG®slim glass substrates.Including each coating,it was deposited for various concentrations in the aerosol solution with the substrate temperature maintained at 623.15 K by an ultrasonic spray pyrolysis(USP)technique.Nitrogen was em-ployed both as the solution carrier in addition to aerosol directing gas,maintaining its flow rates at 3500.0 and 500.0 mL/min,respectively.The coatings were polycrystalline,with preferential growth along the stannic oxide(112)plane,irrespective of the molarity content in the spray solution.The coating prepared at 0.2 M,a concentration in the aerosol solution,showed an average transmission of 60%in the visible light region spectrum with a maximum conductivity of 24.86 S/cm.The coatings deposited exhibited in the general photoluminescence spectrum emission colors of green,greenish white,and bluish white calculated on the intensities of the excitonic and oxygen vacancy defect level emissions.展开更多
Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of ace...Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.展开更多
基金supported by the National Natural Science Foundation of China(No.52122407)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC3048)the Key Research and Development Program of Yunnan Province,China(No.202103AA080019).
文摘Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transition metal substitution to reduce the Co content.However,the traditional coprecipitation method cannot satisfy the requirements of multielement coprecipitation and uniform distribution of elements due to the differences between element concentration and deposition rate.In this work,spray pyrolysis was used to prepare LiNi_(0.9)Co_(0.1-x)W_(x)O_(2)(LNCW).In this regard,the pyrolysis behavior of ammonium metatungstate was analyzed,together with the substitu-tion of W for Co.With the possibility of spray pyrolysis,the Ni-Co-W-containing oxide precursor presents a homogeneous distribution of metal elements,which is beneficial for the uniform substitution of W in the final materials.It was observed that with W substitution,the size of primary particles decreased from 338.06 to 71.76 nm,and cation disordering was as low as 3.34%.As a consequence,the pre-pared LNCW exhibited significantly improved electrochemical performance.Under optimal conditions,the lithium-ion battery assembled with LiNi_(0.9)Co_(0.0925)W_(0.0075)O_(2)(LNCW-0.75mol%)had an improved capacity retention of 82.7%after 200 cycles,which provides insight in-to the development of Ni-rich low-Co materials.This work presents that W can compensate for the loss caused by Co deficiency to a cer-tain extent.
文摘Boron-doped NiO thin films were prepared on glass substrates at 400℃ by airbrush spraying method using a solution of nickel nitrate hexahydrate. Their physical properties were investigated as a function of dopant concentration. From X-ray diffraction patterns, it is observed that the films have cubic structure with lattice parameters varying with boron concentration. The morphologies of the films were examined by using scanning electron microscopy, and the grain sizes were measured to be around 30-50 nm. Optical measurements show that the band gap energies of the films first decrease then increase with increasing boron concentration. The resistivities of the films were determined by four point probe method, and the changes in resistivity with boron concentration were investigated.
基金Project supported by National "The Tenth Five-Year"plan (2003BA316A01-03-05) and "The Tenth Five-Year"Plan(BE2004021) of Jiangsu provicce
文摘Spherical YAG:Ce^3+ phosphor particles with narrow size distribution were prepared by spray pyrolysis. The effects of the concentration of solution, the flow rate of cartier gas and the annexing temperature on the phosphor morphology were studied. The productivity of precursor particles shows a trend of drop after rising with the increase of concentration Raising the flow rate of nitrogen can improve the productivity of the precursor particles. Phosphor prepared by spray pyrolysis has obviously higher emission intensity than that synthesized by solid state reaction, spray pyrolysis makes Ce^3+ ions well distributed in the crystal lattice as the luminescent centers, and phosphor particles have regular sphericity and narrow size distribution.
基金financially supported by the Scientific and Technological Research Council of Turkey (No. 107M505)
文摘ZnO nanoparticles and porous particles were produced by an ultrasonic spray pyrolysis method using a zinc nitrate precursor at various temperatures under air atmosphere. The effects of reaction temperature on the size and morphology of ZnO particles were investi- gated. The samples were characterized by energy dispersive spectroscopy, X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. ZnO particles were obtained in a hexagonal crystal structure and the crystallite shapes changed from spherical to hex- agonal by elevating the reaction temperature. The crystallite size grew by increasing the temperature, in spite of reducing the residence time in the heated zone. ZnO nanoparticles were obtained at the lowest reaction temperature and ZnO porous particles, formed by aggregation of ZnO nanoparticles due to effective sintering, were prepared at higher temperatures. The results showed that the properties of ZnO particles can be controlled by changing the reaction temperature in the ultrasonic spray pyrolysis method.
基金financial support of the National Basic Research Program of China (2014CB643406)the National Natural Science Foundation of China (51674296, 51704332)+1 种基金the National Postdoctoral Program for Innovative Talents (BX201700290)the Fundamental Research Funds for the Central Universities of Central South University (2017zzts125)
文摘In this study we report a series of nickel-rich layered cathodes LiNi1-2xCoxMnxO2(x = 0.075, 0.05,0.025) prepared from chlorides solution via ultrasonic spray pyrolysis. SEM images illustrate that the samples are submicron-sized particles and the particle sizes increase with the increase of Ni content.LiNi0.85Co0.075Mn0.075O2 delivers a discharge capacity of 174.9 mAh g-1 with holding 93% reversible capacity at 1 C after 80 cycles, and can maintain a discharge capacity of 175.3 mAh g-1 at 5 C rate. With increasing Ni content, the initial specific capacity increases while the cycling and rate performance degrades in some extent. These satisfying results demonstrate that spray pyrolysis is a powerful and efficient synthesis technology for producing Ni-rich layered cathode(Ni content 〉 80%).
基金supported by Erzincan University Scientific Research Project(Project No:09.02.01)and Tübitak-Bideb National Scholarship Program for PhD S tudent
文摘In this study,Tungsten Oxide(WO_3)thin films were prepared by Chemical Spray Pyrolysis(CSP)and Spin Coating(SC)techniques and it was investigated effects of technique and parameter on the films.WO_3 thin films were deposited on ITO(Indium Tin Oxide)coated glasses.The structural,optical and electrochromic properties of the WO_3 thin films were characterized by XRD,SEM,UV,and CV measurements.The sharpest(200)peak was observed in the XRD spectra and optical band gaps were calculated around 2.6~3.1 eVvia UV-Vis spectra for all of the samples.Micro fibrous reticulated surface(filamentous like)morphology for the films deposited by CSP technique and smooth surface morphology with high optical transmittance for the film deposited by SC Technique were obtained from SEM images.In addition to these results,it was revealed that all the samples exhibit good electrochromic performance.
文摘Silver powder was fabricated by spray pyrolysis, using 2%-20% AgNO3 solution, 336-500 mL/h flux of AgNO3 solution, 0.28-0.32 MPa flux of carrier gas and in the 620-820 ℃ temperature range. The effects of furnace set temperature, concentration of AgNO3 aqueous solution, flux of AgNO3 aqueous solution as well as carrier gas on the morphology and particle size distribution of silver powder, were investigated. The experimental results showed that with the high concentration of AgNO3 aqueous solution, the average grain size of silver decreased with the increasing of furnace set temperature. But the gain size distribution was not homogenous, the discontinuous grain growth occurred. With the low concentration of AgNO3 aqueous solution, the higher furnace set temperature made the nano sliver grains sintered together to grow. Nano silver powder about 100 nm was fabricated by spray pyrolysis, using 2wt% AgNO3 solutions, 336 mL/h flux of AgNO3 aqueous solution, 0.32 MPa flux of carrier gas at 720 ℃ furnace set temperature.
基金financially supported by the National Natural Science Foundation of China(NSFC,21805298,21905288,51904288)the Zhejiang Provincial Natural Science Foundation(Z21B030017)+2 种基金the K.C.Wong Education Foundation(GJTD-201913)the Ningbo major special projects of the Plan‘‘Science and Technology Innovation 2025”(2018B10056,2019B10046)the Ningbo 3315 Program。
文摘The retarded kinetics of oxygen evolution on electrodes is a bottleneck for electrochemical energy conversion and storage systems.NiFe-based electrocatalysts provide a cost-effective choice to confront this challenge.However,there is a lack of facile techniques for depositing compact catalytic films of high coverage and possessing a state-of-the-art performance,which is especially desired in photoelectrochemical(PEC)systems.Herein,we demonstrate a spray pyrolysis(SP)route to address this issue,featuring the kinetic selective preparation towards the desired catalytic-active material.Differing from reported SP protocols which only produce inactive oxides,this approach directly generates a unique composite film consisting of NiFe layered oxyhydroxides and amorphous oxides,exhibiting an overpotential as small as 255 mV(10 mA cm^(−2))and a turnover frequency of∼0.4 s^(−1)per metal atom.By using such a facile protocol,the surface rate-limiting issue of BiVO_(4)photoanodes can be effectively resolved,resulting in a charge injection efficiency of over 90%.Considering this deposition directly start from simple nitrates but only takes several seconds to complete,we believe it can be developed as a widely applicable and welcomed functionalization technique for diverse electrochemical devices.
基金Project(50604018) supported by the National Natural Science Foundation of China
文摘With citric acid as a polymeric agent layered LiNi0.8Co0.2O2 materials were synthesized by a spray pyrolysis method. The LiNi0.sCo0.2O2 particles were characterized by means of XRD, SEM and TEM. The electrochemical performances of LiNi0.8Co0.2O2 particles were studied in a voltage window of 3.00-4.35 V and at a current density of 30 mA/g. The results show that in the pilot-scale spray pyrolysis process, the morphology of particles is dependent upon the precursor concentration and flux of carrier gas. The initial discharge capacity of the LiNi0.8Co0.2O2particles at 720 ℃ for 12 h is 187.3 mA.h/g, and the capacity remains 96.8% with excellent cycleability after 30 cycles. The LiNi0.8Co0.2O2 samples synthesized under the optimized conditions by the spray pyrolysis method shows a good electrochemical performance.
文摘The deposition of metal oxide films using Spray Pyrolysis Technique (SPT) is investigated through mathematical and physical modeling. A comprehensive model is developed in the processes including atomization, spray, evaporation, chemical reaction and deposition. The predicted results including particle size and film thickness are compared with the experimental data obtained in a complementary study. The predicted film thickness is in a good agreement with the measurements when the temperature is high enough for the chemical reaction to proceed. The model also adequately predicts the size distribution when the nanocrystals are well-structured at controlled temperature and concentration.
文摘A study of the phase transitions in superconducting thin films of the Thallium-Barium-Calcium-Copper (TBCCO) system is carried out. In particular, it was got the Tl-1223 phase. For this purpose, and using the ultrasonic spray pyrolysis technique, Barium-Calcium-Copper precursor films were first obtained. Upon deposition of the precursor films, and as a second step, they were thallium (Tl) diffused in the one-zone furnace at 860°C. This methodology resulted in superconducting films that showed a phase transition as follows: Tl-2223 → Tl-2223 + Tl-2212 → Tl-2212 → Tl-1223, achieved between 2 and 7 hours of thallium diffusion. The evidence of the phase transitions was corroborated by the experimental results of X-ray diffraction, energy dispersive spectroscopy and resistance-temperature measurements.
文摘Nickel oxide (NiO) thin film has been deposited on a glass substrate at a temperature of 390°C ± 10°C using a simple and inexpensive spray pyrolysis technique. Nickel nitrate salt solution (Ni(NO3)2·6H2O) was employed to prepare the films and the film thickness was in order of 200 ± 5 nm. The structural, optical and electrical properties of NiO films were investigated using X-ray diffraction (XRD), visible spectrum, DC conductivity and Seebeck effect measurements. The results show that X-ray diffraction techniques have shown that prepared film is polycrystalline structure type cubic phase. The measurements of optical properties (transmittance (T) and absorbance (A)) of NiO films show that higher transmittance is 37.4% within the wavelength range (300 - 900 nm). Also the results have shown that the higher absorbance is 77.7%. The results of electrical properties have shown that at room temperature electrical conductivity is 1.3 × 10-5 (Ω·cm)-1, and also results have shown that all the films are of p-type due to the negative Seebeck coefficient.
文摘Titanium dioxide thin films were deposited on (0001) α-quartz substrate by spray pyrolysis method. The method which an aerosol of Titanium Butoxide, generated ultrasonically, was sprayed on the substrate at temperature of 400°C, kept at this temperature for periods of 3, 13, 19 and 39 hours. The developed films at a crystal phase correspond to the TiO2 anatase and rutile phases. Their surface roughness increased by annealing the samples at 600, 800 and 1000°C. Deposited film annealed at 1000°C showed preferable orientation in (110) direction. The crystal evolution and crystallographic properties of this material was studied by Lotgering method, X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The study revealed that the deposition process was nearly close to the classical Chemical Vapour Deposition (CVD) technique that is generally employed to produce films with smooth surface and good crystalline properties with a thickness of about 1 μm, as measured by Focused Ion Beam.
文摘Cu-Zn-S (CZS) films were deposited by the spray pyrolysis method. As-deposited CZS film showed a low crystallinity. The resistivity of CZS film with Cu/(Cu+Zn) ratio of 50% is around 10-2Ω﹒cm. The CZS film elements using spray Cu-Zn (=1:1) solution with thiourea was confirmed as? Cu:Zn:Sn=2:2:3 by ICP-MS and EDX. The band gap of CZS films was varied in the range of 1.8 - 3.5 ev when the? Cu/(Cu+Zn)ratio was increased from 0 to 67%;CZS film with Cu/(Cu+Zn)ratio of 50 % showed an wide band gap of 2 eV. The photovoltaic characteristics were confirmed with cell structure of . The best cell was observed at the CZS films with Cu/(Cu+Zn)ratio of 50%;these cells depicted a conversion efficiency of 1.7%.
基金Project supported by the "Bairen Jihua" of Chinese Academy of Sciences, the MOST of China (2003CB314707) and the National Natural Science Foundation of China (20271048 )
文摘Using CaCO3, metal oxides (all dissolved by nitric acid) and tetraethoxysilane Si (OC2H5 )4 (TEOS) as the main starting materials, Ca2Y8 (SiO4 )6O2: Eu3+ phosphors were synthesized by spray pyrolysis.X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting phosphors.The results of XRD indicated that the 1000 ℃ annealed powders crystallize with the silicate oxyapatite structure.SEM study revealed that the phosphors consist of spherical particles with an average size of about 1 ~ 3 μm.In the crystalline Ca2 Y8 (SiO4)6O2: Eu3+ phosphor, the Eu3+ shows its characteristic emission corresponding to 5 D0 - 7 FJ ( J = 0, 1,2, 3, 4) transitions, with 5D0 - 7 F2 red emission (613 nm) as the most prominent group, agreeing well with the structure of the host material.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0902303)the Key Research and Development Program of Shaanxi Province,China(Grant No.2018GY-121N)the National Key Project of Magneto Constrained Fusion Energy Development Program,China(Grant No.2015GB115001)
文摘The phase evolution of Bi-2223 precursor powder prepared by spray pyrolysis method is studied with different heat treatment parameters. The results show that the reaction temperature and phase composition of precursor powder depend on heat treatment atmosphere. Phase assemblage of(Bi,Pb)-2212, AEC, CuO, and small Bi-2201 can be obtained by heat-treated in N2-0.1%O_2 atmosphere. For precursor powder, there is sufficient reaction process at 770℃, and the dimension of Bi-2212 phase increases rapidly with the increase of heat treatment temperature and time. The dimension of AEC phase also increases by extending heat treatment time. As a balance among phase assemblage, dimension of particle and adequate reaction, a reasonable precursor powder can be obtained by heat-treated at 770℃ for 12 h–16 h in N2-0.1%O_2 atmosphere. Critical current of 37-filament Bi-2223 tape is about 120 A, which confirms that these heat treatment parameters are reasonable.
基金This work was partially supported by CONACyT under contract Number 166601.
文摘Fluorine doped tin oxide, SnO2:F, thin films were deposited by ultrasonic chemical spray starting from tin chloride and hydrofluoric acid. The physical characteristics of the films as a function of both water content in the starting solution and substrate temperature were studied. The film structure was polycrystalline in all cases, showing that the intensity of (200) peak increased with the water content in the starting solution. The electrical resistivity decreased with the water content, reaching a minimum value, in the order of 8 × 10-4 Ωcm, for films deposited at 450℃ from a starting solution with a water content of 10 ml per 100 ml of solution;further increase in water content increased the corresponding resistivity. Optical transmittances of SnO2:F films were high, in the order of 75%, and the band gap values oscillated around 3.9 eV. SEM analysis showed uniform surface morphologies with different geometries depending on the deposition conditions. Composition analysis showed a stoichiometric compound with a [Sn/O] ratio around 1:2 in all samples. The presence of F into the SnO2 lattice was detected, within 2 at % respect to Sn.
文摘The Pr and Ta separately doped FTO(10 at.% F incorporated Sn O2) films are fabricated via spray pyrolysis. The microstructural, topographic, optical, and electrical features of fluorine-doped TO(FTO) films are investigated as functions of Pr and Ta dopant concentrations. The x-ray diffraction(XRD) measurements reveal that all deposited films show polycrystalline tin oxide crystal property. FTO film has(200) preferential orientation, but this orientation changes to(211) direction with Pr and Ta doping ratio increasing. Atomic force microscopy(AFM) and scanning electron microscopy(SEM) analyses show that all films have uniform and homogenous nanoparticle distributions. Furthermore, morphologies of the films depend on the ratio between Pr and Ta dopants. From ultraviolet-visible(UV-Vis) spectrophotometer measurements, it is shown that the transmittance value of FTO film decreases with Pr and Ta doping elements increasing. The band gap value of FTO film increases only at 1 at.% Ta doping level, it drops off with Pr and Ta doping ratio increasing at other doped FTO films. The electrical measurements indicate that the sheet resistance value of FTO film initially decreases with Pr and Ta doping ratio decreasing and then it increases with Pr and Ta doping ratio increasing. The highest value of figure of merit is obtained for 1 at.% Ta- and Pr-doped FTO film. These results suggest that Pr- and Ta-doped FTO films may be appealing candidates for TCO applications.
基金the financial support from the Escuela Superior de Medicina,Instituto Politécnico Nacional,through Project No.20210385。
文摘Highly transparent conductive stoichiometric nanocrystalline stannic oxide coatings were deposited onto Corning®EAGLE XG®slim glass substrates.Including each coating,it was deposited for various concentrations in the aerosol solution with the substrate temperature maintained at 623.15 K by an ultrasonic spray pyrolysis(USP)technique.Nitrogen was em-ployed both as the solution carrier in addition to aerosol directing gas,maintaining its flow rates at 3500.0 and 500.0 mL/min,respectively.The coatings were polycrystalline,with preferential growth along the stannic oxide(112)plane,irrespective of the molarity content in the spray solution.The coating prepared at 0.2 M,a concentration in the aerosol solution,showed an average transmission of 60%in the visible light region spectrum with a maximum conductivity of 24.86 S/cm.The coatings deposited exhibited in the general photoluminescence spectrum emission colors of green,greenish white,and bluish white calculated on the intensities of the excitonic and oxygen vacancy defect level emissions.
基金supported by Hi-Tech Research and Development Program of China (Grant Nos. 2007AA05Z436 and 2009AA050602)Science and Technology Support Project of Tianjin (Grant No. 08ZCKFGX03500)+3 种基金the National Basic Research Program of China (Grant Nos. 2011CB201605 and 2011CB201606)the National Natural Science Foundation of China (Grant No. 60976051)International Cooperation Project between China-Greece Government (Grant No. 2009DFA62580)Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0295)
文摘Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82 × 10^-3 Ω. cm and particle grains. The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58 × 10^-3 Ω. cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer, and the second-layer plays a large part in the resistivity of the doublewlayer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.