期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis of flow-field in a dual mode ramjet combustor with boundary layer bleed in isolator 被引量:2
1
作者 Nishanth Thillai Amit Thakur +1 位作者 Srikrishnateja K. Dharani J. 《Propulsion and Power Research》 SCIE 2021年第1期37-47,共11页
A two-dimensional Reynolds averaged Navier Stokes(RANS)simulation of a dual mode ramjet(DMRJ)combustor is performed,modeling the University of Michigan dual-mode combustor experimental setup operating in reacting mode... A two-dimensional Reynolds averaged Navier Stokes(RANS)simulation of a dual mode ramjet(DMRJ)combustor is performed,modeling the University of Michigan dual-mode combustor experimental setup operating in reacting mode with different equivalence ratios(4).The simulations are carried out using a k-u SST turbulence model and a steady diffusion flamelet model for non-premixed combustion.Air enters the isolator at Mach 2.2,stagnation pressure and temperature of 549.2 kPa and 1400 K respectively.Hydrogen is injected transverse to the flow direction and upstream of the cavity flame holder to simulate ramjet(4 Z 0.29)and scramjet(4 Z 0.19)modes of operation.Wall static pressure plots are used to validate numerical results against experimental data.Analysis of flow separation in ramjet mode due to the presence of a shock train in the isolator is carried out by means of numerical Schlieren images overlapped with contours of negative axial velocity,showing the effects of shock wave boundary layer interaction(SWBLI).Active control through wall normal boundary layer bleed in the separated flow region is implemented,which weakens the shock train and moves it downstream closer to the cavity.Bleed results in an improved stagnation pressure recovery in ramjet mode,with a marginal increase in combustion efficiency. 展开更多
关键词 Dual mode ramjet Scramjet combustor Shock wave boundary layer interaction Boundary-layer bleed flamelet combustion model
原文传递
Numerical simulations of turbulent flows in aeroramp injector/gas-pilot flame scramjet 被引量:2
2
作者 Bing CHEN Xu XU +1 位作者 Baoxi WEI Yan ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1373-1390,共18页
To uncover the internal flow characteristics in an ethylene-fueled aeroramp injector/gaspilot(ARI/G-P)flame scramjet,a Reynolds-averaged Navier-Stokes(RANS)solver is constructed under a hybrid polyhedral cell fini... To uncover the internal flow characteristics in an ethylene-fueled aeroramp injector/gaspilot(ARI/G-P)flame scramjet,a Reynolds-averaged Navier-Stokes(RANS)solver is constructed under a hybrid polyhedral cell finite volume frame.The shear stress transport(SST)k-x model is used to predict the turbulence,while the Overmann’s compressibility corrected laminar flamelet model is adopted to simulate the turbulent combustion.Nonreactive computations for Case 1(G-P jet on),Case 2(ARI jets on),and Case 3(both ARI and G-P jets on)were conducted to analyze the mixing mechanism,while reactive Cases 4–7 at equivalent ratios of 0.380,0.278,0.199 and0.167 respectively were calculated to investigate the flame structure and combustion modes.The numerical results are compared well to those of the experiments.It is shown that the G-P jet plays significant role in both the fuel/air mixing and flame holding processes;the combustion for the four reactive cases takes place intensively in the regions downstream of the ARI/G-P unit;Cases 4 and 5are under subsonic combustion mode,whereas Cases 6 and 7 are mode transition critical and supersonic combustion cases,respectively;the mode transition equivalent ratio is approximately 0.20. 展开更多
关键词 combustion mode Laminar flamelet model Menter's SST k-ω model Scramjet Turbulent combustion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部