The problem of flapping motion control of Micro Air Vehicles (MAVs) with flapping wings was studied in this paper.Based upon the knowledge of skeletal and muscular components of hummingbird, a dynamic model for flappi...The problem of flapping motion control of Micro Air Vehicles (MAVs) with flapping wings was studied in this paper.Based upon the knowledge of skeletal and muscular components of hummingbird, a dynamic model for flapping wing wasdeveloped.A control scheme inspired by human memory and learning concept was constructed for wing motion control ofMAVs.The salient feature of the proposed control lies in its capabilities to improve the control performance by learning fromexperience and observation on its current and past behaviors, without the need for system dynamic information.Furthermore,the overall control scheme has a fairly simple structure and demands little online computations, making it attractive for real-timeimplementation on MAVs.Both theoretical analysis and computer simulation confirms its effectiveness.展开更多
Given the uncertainty of parameters and the random nature of disturbances that effect a ships course, a robust course controller should be designed on the basis of rudder/flap vector control. This paper analyzes syste...Given the uncertainty of parameters and the random nature of disturbances that effect a ships course, a robust course controller should be designed on the basis of rudder/flap vector control. This paper analyzes system uncertainty, and the choice of weighting functions is also discussed. When sea waves operate on a ship, the energy-concentrating frequency varies with the angle of encounter. For different angles of encounter, different weighting functions are designed. For the pole of a nominal model existing in an imaginary axis, the bilinear-transform method is used. The "2-Riccati" equation is adopted to solve the H∞ controller. A system simulation is given, and the results show that, compared with a PID controller, this system has higher course precision and more robust performance. This research has significant engineering value.展开更多
In order to investigate the effects of vortex control by deflecting flaps on the improvement of the aerodynamics of highly swept wings at large incidence, comparison of the experimental and numerical studies was condu...In order to investigate the effects of vortex control by deflecting flaps on the improvement of the aerodynamics of highly swept wings at large incidence, comparison of the experimental and numerical studies was conducted for a 74° delta wing equipped with an apex flap and leading edge flaps. In the experimental study, flow visualization and force measurement were employed and in the numerical study the pseudo compressibility method was utilized to solve the 3 D incompressible Navier Stokes equations. The flow visualization and numerical simulation show that two vortex systems generated on the apex flap and leading edge flaps interact in the form of mergence, and the downward deflection of the apex flap enhances the strength and delays the breakdown of the prime vortex at large incidence. The comparison of the aerodynamic characteristics illustrates that there are advantageous effects of deflecting flaps downward on the control of vortices.展开更多
AIM To compared outcomes between the hypothenar fat pad flap(HTFPF) and conventional open carpal tunnel release(COR) in primary carpal tunnel syndrome(CTS). METHODS Forty-five patients(49 hands) were enrolled into the...AIM To compared outcomes between the hypothenar fat pad flap(HTFPF) and conventional open carpal tunnel release(COR) in primary carpal tunnel syndrome(CTS). METHODS Forty-five patients(49 hands) were enrolled into the study from January 2014 to March 2016, 8 patients were excluded. Randomization was conducted in 37 patients(41 hands) by computer generated(Block of four randomization) into COR and HTFPF group. Nerve conduction study(NCS) included distal sensory latency(DSL), distal motor latency(DML), sensory amplitude (S-amp), motor amplitude(M-amp) and sensory nerve conduction velocity(SCV) were examined at 6 and 12 wk after CTR. Levine score, grip and pinch strength, pain [visual analog scale(VAS)], 2-point discrimination(2-PD), Semmes-Weinstein monofilament test(SWM), Phalen test and Tinel's sign were evaluated in order to compare treatment outcomes.RESULTS The COR group, 19 patients(20 hands) mean age 50.4 years. The HTFPF group, 20 patients(21 hands) mean age 53.3 years. Finally 33 patients(36 hands) were analysed, 5 patients were loss follow-up, 17 hands in COR and 19 hands in HTFPF group. NCS revealed significant difference of DSL in HTFPF group at 6 wk(P < 0.05) compared with the COR group. S-amp was significant improved postoperatively in both groups(P < 0.05) but not significant difference between two groups. No significant difference of DML, M-amp and SCV postoperatively in both groups and between two groups. Levine score, pain(VAS), grip and pinch strength, 2-PD, SWM, Phalen test and Tinel's sign were improved postoperatively in both groups, but there was no significant difference between two groups.CONCLUSION There is no advantage outcome in primary CTS for having additional HTFPF procedure in CTR. COR is still the standard treatment. Nevertheless, improvement of DSL and S-amp could be observed at 6 wk postoperatively.展开更多
This study demonstrates an active flow control for deflecting a direction of wake vortex structures behind a NACA0012 airfoil using an active morphing flap. Two-dimensional direct numerical simulations are performed f...This study demonstrates an active flow control for deflecting a direction of wake vortex structures behind a NACA0012 airfoil using an active morphing flap. Two-dimensional direct numerical simulations are performed for flows at the chord Reynolds number of 10,000, and the vortex pattern in the controlled and noncontrolled wakes as well as the effect of an actuation frequency on the control ability are rigorously investigated. It is found that there is an optimum actuation-frequency regime at around <em>F <sup>+</sup></em> = 2.00 which is normalized by the chord length and freestream velocity. The wake vortex pattern of the well-controlled case is classified as the 2P wake pattern according to the Williamson’s categorization [<a href="#ref1">1</a>] [<a href="#ref2">2</a>], where the forced oscillation frequency corresponds to the natural vortex shedding frequency without control. The present classification of wake vortex patterns and finding of the optimum frequency regime in the wake deflection control can lead to a more robust design suitable for vortex-induced-vibration (VIV) related engineering systems.展开更多
One of the issues about Blended-Wing-Body configuration (BWB) is its difficulty in pitch control due to the missing tail. To solve this problem, a novel pitch control surface, belly-flap, has been presented. In this...One of the issues about Blended-Wing-Body configuration (BWB) is its difficulty in pitch control due to the missing tail. To solve this problem, a novel pitch control surface, belly-flap, has been presented. In this paper, the feasibility of belly-flap being used as a transonic pitch control device for tailless configuration is investigated on a BWB in-body airfoil, using the computationalfluid dynamic (CFD) method. The size, location and deflection angle of the flap are studied to detect their effect on the aerodynamic characteristics. The results reveal that the bubble separation due to the belly-flap can affect shock position on the upper surface of the airfoil and change the surface pressure distribution. By choosing appropriate geometry parameters, the load distribution can be improved to obtain significant pitch-up moment increment in a wide angle of attack with no lift-loss and less lift-drag ratio decrement.展开更多
Most flapping-wing aircraft wings use a single degree of freedom to generate lift and thrust by flapping up and down,while relying on the tail control surfaces to manage attitude.However,these aircraft have certain li...Most flapping-wing aircraft wings use a single degree of freedom to generate lift and thrust by flapping up and down,while relying on the tail control surfaces to manage attitude.However,these aircraft have certain limitations,such as poor accuracy in attitude control and inadequate roll control capabilities.This paper presents a design for an active torsional mechanism at the wing's trailing edge,which enables differential variations in the pitch angle of the left and right wings during flapping.This simple mechanical form significantly enhances the aircraft's roll control capacity.The experimental verification of this mechanism was conducted in a wind tunnel using the RoboEagle flapping-wing aerial vehicle that we developed.The study investigated the effects of the control strategy on lift,thrust,and roll moment during flapping flight.Additionally,the impact of roll control on roll moment was examined under various wind speeds,flapping frequencies,angles of attack,and wing flexibility.Furthermore,several rolling maneuver flight tests were performed to evaluate the agility of RoboEagle,utilizing both the elevon control strategy and the new roll control strategy.The results demonstrated that the new roll control strategy effectively enhances the roll control capability,thereby improving the attitude control capabilities of the flapping-wing aircraft in complex wind field environments.This conclusion is supported by a comparison of the control time,maximum roll angle,average roll angular velocity,and other relevant parameters between the two control strategies under identical roll control input.展开更多
文摘The problem of flapping motion control of Micro Air Vehicles (MAVs) with flapping wings was studied in this paper.Based upon the knowledge of skeletal and muscular components of hummingbird, a dynamic model for flapping wing wasdeveloped.A control scheme inspired by human memory and learning concept was constructed for wing motion control ofMAVs.The salient feature of the proposed control lies in its capabilities to improve the control performance by learning fromexperience and observation on its current and past behaviors, without the need for system dynamic information.Furthermore,the overall control scheme has a fairly simple structure and demands little online computations, making it attractive for real-timeimplementation on MAVs.Both theoretical analysis and computer simulation confirms its effectiveness.
文摘Given the uncertainty of parameters and the random nature of disturbances that effect a ships course, a robust course controller should be designed on the basis of rudder/flap vector control. This paper analyzes system uncertainty, and the choice of weighting functions is also discussed. When sea waves operate on a ship, the energy-concentrating frequency varies with the angle of encounter. For different angles of encounter, different weighting functions are designed. For the pole of a nominal model existing in an imaginary axis, the bilinear-transform method is used. The "2-Riccati" equation is adopted to solve the H∞ controller. A system simulation is given, and the results show that, compared with a PID controller, this system has higher course precision and more robust performance. This research has significant engineering value.
文摘In order to investigate the effects of vortex control by deflecting flaps on the improvement of the aerodynamics of highly swept wings at large incidence, comparison of the experimental and numerical studies was conducted for a 74° delta wing equipped with an apex flap and leading edge flaps. In the experimental study, flow visualization and force measurement were employed and in the numerical study the pseudo compressibility method was utilized to solve the 3 D incompressible Navier Stokes equations. The flow visualization and numerical simulation show that two vortex systems generated on the apex flap and leading edge flaps interact in the form of mergence, and the downward deflection of the apex flap enhances the strength and delays the breakdown of the prime vortex at large incidence. The comparison of the aerodynamic characteristics illustrates that there are advantageous effects of deflecting flaps downward on the control of vortices.
文摘AIM To compared outcomes between the hypothenar fat pad flap(HTFPF) and conventional open carpal tunnel release(COR) in primary carpal tunnel syndrome(CTS). METHODS Forty-five patients(49 hands) were enrolled into the study from January 2014 to March 2016, 8 patients were excluded. Randomization was conducted in 37 patients(41 hands) by computer generated(Block of four randomization) into COR and HTFPF group. Nerve conduction study(NCS) included distal sensory latency(DSL), distal motor latency(DML), sensory amplitude (S-amp), motor amplitude(M-amp) and sensory nerve conduction velocity(SCV) were examined at 6 and 12 wk after CTR. Levine score, grip and pinch strength, pain [visual analog scale(VAS)], 2-point discrimination(2-PD), Semmes-Weinstein monofilament test(SWM), Phalen test and Tinel's sign were evaluated in order to compare treatment outcomes.RESULTS The COR group, 19 patients(20 hands) mean age 50.4 years. The HTFPF group, 20 patients(21 hands) mean age 53.3 years. Finally 33 patients(36 hands) were analysed, 5 patients were loss follow-up, 17 hands in COR and 19 hands in HTFPF group. NCS revealed significant difference of DSL in HTFPF group at 6 wk(P < 0.05) compared with the COR group. S-amp was significant improved postoperatively in both groups(P < 0.05) but not significant difference between two groups. No significant difference of DML, M-amp and SCV postoperatively in both groups and between two groups. Levine score, pain(VAS), grip and pinch strength, 2-PD, SWM, Phalen test and Tinel's sign were improved postoperatively in both groups, but there was no significant difference between two groups.CONCLUSION There is no advantage outcome in primary CTS for having additional HTFPF procedure in CTR. COR is still the standard treatment. Nevertheless, improvement of DSL and S-amp could be observed at 6 wk postoperatively.
文摘This study demonstrates an active flow control for deflecting a direction of wake vortex structures behind a NACA0012 airfoil using an active morphing flap. Two-dimensional direct numerical simulations are performed for flows at the chord Reynolds number of 10,000, and the vortex pattern in the controlled and noncontrolled wakes as well as the effect of an actuation frequency on the control ability are rigorously investigated. It is found that there is an optimum actuation-frequency regime at around <em>F <sup>+</sup></em> = 2.00 which is normalized by the chord length and freestream velocity. The wake vortex pattern of the well-controlled case is classified as the 2P wake pattern according to the Williamson’s categorization [<a href="#ref1">1</a>] [<a href="#ref2">2</a>], where the forced oscillation frequency corresponds to the natural vortex shedding frequency without control. The present classification of wake vortex patterns and finding of the optimum frequency regime in the wake deflection control can lead to a more robust design suitable for vortex-induced-vibration (VIV) related engineering systems.
文摘One of the issues about Blended-Wing-Body configuration (BWB) is its difficulty in pitch control due to the missing tail. To solve this problem, a novel pitch control surface, belly-flap, has been presented. In this paper, the feasibility of belly-flap being used as a transonic pitch control device for tailless configuration is investigated on a BWB in-body airfoil, using the computationalfluid dynamic (CFD) method. The size, location and deflection angle of the flap are studied to detect their effect on the aerodynamic characteristics. The results reveal that the bubble separation due to the belly-flap can affect shock position on the upper surface of the airfoil and change the surface pressure distribution. By choosing appropriate geometry parameters, the load distribution can be improved to obtain significant pitch-up moment increment in a wide angle of attack with no lift-loss and less lift-drag ratio decrement.
基金supported by National Natural Science Foundation of China under Grants No.52175277 and 12272318ND Basic Research Funds under Grants G2022WD,Key R&D Program in Shaanxi Province of China under Grant No.2023-YBGY-372.
文摘Most flapping-wing aircraft wings use a single degree of freedom to generate lift and thrust by flapping up and down,while relying on the tail control surfaces to manage attitude.However,these aircraft have certain limitations,such as poor accuracy in attitude control and inadequate roll control capabilities.This paper presents a design for an active torsional mechanism at the wing's trailing edge,which enables differential variations in the pitch angle of the left and right wings during flapping.This simple mechanical form significantly enhances the aircraft's roll control capacity.The experimental verification of this mechanism was conducted in a wind tunnel using the RoboEagle flapping-wing aerial vehicle that we developed.The study investigated the effects of the control strategy on lift,thrust,and roll moment during flapping flight.Additionally,the impact of roll control on roll moment was examined under various wind speeds,flapping frequencies,angles of attack,and wing flexibility.Furthermore,several rolling maneuver flight tests were performed to evaluate the agility of RoboEagle,utilizing both the elevon control strategy and the new roll control strategy.The results demonstrated that the new roll control strategy effectively enhances the roll control capability,thereby improving the attitude control capabilities of the flapping-wing aircraft in complex wind field environments.This conclusion is supported by a comparison of the control time,maximum roll angle,average roll angular velocity,and other relevant parameters between the two control strategies under identical roll control input.