A numerical investigation on the power extraction performance of a semi-activated flapping foil in gusty flow is conducted by using the commercial software FLUENT. The foil is forced to pitch around the axis at one-th...A numerical investigation on the power extraction performance of a semi-activated flapping foil in gusty flow is conducted by using the commercial software FLUENT. The foil is forced to pitch around the axis at one-third chord and heave in the vertical direction due to the period lift force. Different from previous work with uniform flow, an unsteady flow with cosinusoidal velocity profile is considered in this work. At a Reynolds number of 1100, the influences of the mechanical parameters (spring constant and damping coefficient), the amplitude and frequency of the pitching motion, the amplitude of the gust fluctuation and the phase difference between the pitching motion and the gusty flow on the power extraction performance are systematically investigated. Compared with the case of uniform flow, the capability energy harvesting of the system is enhanced by the introduction of the gusty flow. For a given pitching amplitude and frequency, the power extraction efficiency increases with the gust fluctuation amplitude. Moreover, with an optimal phase difference between pitch and gust (φ = 180°), the efficiency can be further enhanced due to the generation of high lift force.展开更多
The water environment of swimming fish in nature is always complex which includes various vortices and fluctuations. In order to study the interaction between the fish and its surrounding complex flow, the physical mo...The water environment of swimming fish in nature is always complex which includes various vortices and fluctuations. In order to study the interaction between the fish and its surrounding complex flow, the physical model with a D-section cylinder placed at the front of a flapping foil is employed. The D-section cylinder is used to produce vortices to contact with the foil as well as the vortices shed from the foil. According to the experimental work of Gopalkrishnan et al., there are three interaction modes between vortices shed from the cylinder and the flapping foil, which are expanding wake, destructive interaction and constructive interaction. Here in this article, three of those typical cases are picked up to reproduce the vortices interaction modes with the modified immersed boundary methods and their hydrodynamic performances are studied further. Results show that, for expanding wake mode and destructive interaction mode, the incoming vortices contact with the foil strongly, inducing relative low pressure domains at the leading-edge of the foil and enlarging the thrust of foils. For constructive mode, the foil slalom between the shed vortices from the D-section cylinder do not contact with them obviously and the foil's thrust is only enlarged a little.展开更多
HAISHEN is a long-ranged and highly maneuverable AUV which has two operating modes: glider mode and flapping-foil propulsion mode. As part of the vehicle development, a three-dimensional mathematical model of the con...HAISHEN is a long-ranged and highly maneuverable AUV which has two operating modes: glider mode and flapping-foil propulsion mode. As part of the vehicle development, a three-dimensional mathematical model of the conceptual vehicle was developed on the assumption that HAISHEN has a rigid body with two independently controlled oscillating hydrofoils. A flapping-foil model was developed based on the work done by Georgiades et al. (2009). Effect of controllable hydrofoils on the vehicle stable motion performance was studied theoretically. Finally, a dynamics simulation of the vehicle in both operating modes is created in this paper. The simulation demonstrates that: (1) in the glider mode, owing to the independent control of the pitch angle of each hydrofoil, HAISHEN travels faster and more efficiently and has a smaller turning radius than conventional fix-winged gliders; (2) in the flapping-foil propulsion mode, HAISHEN has a high maneuverability with a turning radius smaller than 15 m and a forward motion velocity about 1.8 m/s; (3) the vehicle is stable under all expected operating conditions.展开更多
The use of biomimetic tandem flapping foils for ships and underwater vehicles is considered as a unique and interesting concept in the area of marine propulsion. The flapping wings can be used as a thrust producing, s...The use of biomimetic tandem flapping foils for ships and underwater vehicles is considered as a unique and interesting concept in the area of marine propulsion. The flapping wings can be used as a thrust producing, stabilizer and control devices which has both propulsion and maneuvering applications for marine vehicles. In the present study, the hydrodynamic per- formance of a pair of flexible flapping foils resembling penguin flippers is studied. A ship model of 3 m in length is fitted with a pair of counter flapping foils at its bottom mid-ship region. Model tests are carried out in a towing tank to estimate the propulsive performance of flapping foils in bollard and self propulsion modes. The same tests are performed in a numerical environment using a Computational Fluid Dynamics (CFD) software. The numerical and experimental results show reasonably good agreement in both bollard pull and self propulsion trials. The numerical studies are carried out on flexible flapping hydrofoil in unsteady conditions using moving unstructured grids. The efficiency and force coefficients of the flexible flapping foils are determined and presented as a function of Strouhal number.展开更多
The flapping foil based on bionics is a sort of simplified models which imitate the motion of wings or fins of fish or birds. In this paper, a universal kinematic model with three degrees of freedom is adopted and the...The flapping foil based on bionics is a sort of simplified models which imitate the motion of wings or fins of fish or birds. In this paper, a universal kinematic model with three degrees of freedom is adopted and the motion parallel to the flow direction is considered. The force coefficients, the torque coefficient, and the flow field characteristics are extracted and analyzed. Then the propulsive efficiency is calculated. The influence of the motion parameters on the hydrodynamic performance of the bionic foil is studied. The results show that the motion parameters play important roles in the hydrodynamic performance of the flapping foil. To validate the reliability of the numerical method used in this paper, an experiment platform is designed and verification experiments are carried out. Through the comparison, it is found that the numerical results compare well with the experimental results, to show that the adopted numerical method is reliable. The results of this paper provide a theoretical reference for the design of underwater vehicles based on the flapping propulsion.展开更多
This paper introduces a newly developed Unmanned Wave Glide Vehicle (UWGV), which is driven only by extracting energy from gravity waves, and presents a comprehensive study on the propulsion performance of the UWGV...This paper introduces a newly developed Unmanned Wave Glide Vehicle (UWGV), which is driven only by extracting energy from gravity waves, and presents a comprehensive study on the propulsion performance of the UWGV's propulsor-Wave Glide Propulsor (WGP) in a regular wave. By simplifying the WGP as six 2D tandem asynchronous flapping foils (TAFFs), a CFD method based on Navier-Stokes equations was first used to analyze the hydrodynamic performance of TAFFs with different parameters of non-dimensional wave length rn and non-dimensional wave height n. Then, a series of hydrodynamic experiments were performed. The computational results agree well with the experimental results when n〈0.07 and both of them show the thrust force and input power of the WGP are larger at smaller m or larger n. By analyzing the flow field of TAFFs, we can see that a larger m is beneficial to the forming, merging and shredding of the TAFFs' vortices; as TAFFs are arranged in tandem and have the same motions, the leading edge vortex and wake vortex of the TAFFs are meaningful for improving the thrust force of their adjacent ones.展开更多
The direct-forcing fictitious domain method is extended to simulate the locomotion of a passively pitching foil. Our study focuses on the hysteresis phenomenon that the critical frequency for the reverse of the locomo...The direct-forcing fictitious domain method is extended to simulate the locomotion of a passively pitching foil. Our study focuses on the hysteresis phenomenon that the critical frequency for the reverse of the locomotion direction of the wing in case of decreasing frequency is smaller than that in case of increasing frequency. In our simulations, the hysteresis phenomenon is produced by imposing different initial conditions at a same frequency. Our results indicate that the ratio of the heaving amplitudes of two foil edges is crucial to the direction of the foil's horizontal motion, and the amplitude of the leading edge is generally smaller. The critical frequencies for the reverse of the locomotion direction are increased, when the foil-fluid density ratio is decreased or the spring constant is increased. The critical frequencies in the bi-stability regime also depend on the initial velocity imposed, and the hysteresis loop generally becomes larger if the initial velocities are closer to the terminal locomotion velocities of the foil.展开更多
文摘A numerical investigation on the power extraction performance of a semi-activated flapping foil in gusty flow is conducted by using the commercial software FLUENT. The foil is forced to pitch around the axis at one-third chord and heave in the vertical direction due to the period lift force. Different from previous work with uniform flow, an unsteady flow with cosinusoidal velocity profile is considered in this work. At a Reynolds number of 1100, the influences of the mechanical parameters (spring constant and damping coefficient), the amplitude and frequency of the pitching motion, the amplitude of the gust fluctuation and the phase difference between the pitching motion and the gusty flow on the power extraction performance are systematically investigated. Compared with the case of uniform flow, the capability energy harvesting of the system is enhanced by the introduction of the gusty flow. For a given pitching amplitude and frequency, the power extraction efficiency increases with the gust fluctuation amplitude. Moreover, with an optimal phase difference between pitch and gust (φ = 180°), the efficiency can be further enhanced due to the generation of high lift force.
基金Project supported by the National Natural Science Foundation of China(Grant No.10872181)the National Key Basic Research Program of China(973 Program,Grant No.2009CB724303)the Fundamental Research Funds for the Central Universities(Grant No.2010QNA4015)
文摘The water environment of swimming fish in nature is always complex which includes various vortices and fluctuations. In order to study the interaction between the fish and its surrounding complex flow, the physical model with a D-section cylinder placed at the front of a flapping foil is employed. The D-section cylinder is used to produce vortices to contact with the foil as well as the vortices shed from the foil. According to the experimental work of Gopalkrishnan et al., there are three interaction modes between vortices shed from the cylinder and the flapping foil, which are expanding wake, destructive interaction and constructive interaction. Here in this article, three of those typical cases are picked up to reproduce the vortices interaction modes with the modified immersed boundary methods and their hydrodynamic performances are studied further. Results show that, for expanding wake mode and destructive interaction mode, the incoming vortices contact with the foil strongly, inducing relative low pressure domains at the leading-edge of the foil and enlarging the thrust of foils. For constructive mode, the foil slalom between the shed vortices from the D-section cylinder do not contact with them obviously and the foil's thrust is only enlarged a little.
文摘HAISHEN is a long-ranged and highly maneuverable AUV which has two operating modes: glider mode and flapping-foil propulsion mode. As part of the vehicle development, a three-dimensional mathematical model of the conceptual vehicle was developed on the assumption that HAISHEN has a rigid body with two independently controlled oscillating hydrofoils. A flapping-foil model was developed based on the work done by Georgiades et al. (2009). Effect of controllable hydrofoils on the vehicle stable motion performance was studied theoretically. Finally, a dynamics simulation of the vehicle in both operating modes is created in this paper. The simulation demonstrates that: (1) in the glider mode, owing to the independent control of the pitch angle of each hydrofoil, HAISHEN travels faster and more efficiently and has a smaller turning radius than conventional fix-winged gliders; (2) in the flapping-foil propulsion mode, HAISHEN has a high maneuverability with a turning radius smaller than 15 m and a forward motion velocity about 1.8 m/s; (3) the vehicle is stable under all expected operating conditions.
文摘The use of biomimetic tandem flapping foils for ships and underwater vehicles is considered as a unique and interesting concept in the area of marine propulsion. The flapping wings can be used as a thrust producing, stabilizer and control devices which has both propulsion and maneuvering applications for marine vehicles. In the present study, the hydrodynamic per- formance of a pair of flexible flapping foils resembling penguin flippers is studied. A ship model of 3 m in length is fitted with a pair of counter flapping foils at its bottom mid-ship region. Model tests are carried out in a towing tank to estimate the propulsive performance of flapping foils in bollard and self propulsion modes. The same tests are performed in a numerical environment using a Computational Fluid Dynamics (CFD) software. The numerical and experimental results show reasonably good agreement in both bollard pull and self propulsion trials. The numerical studies are carried out on flexible flapping hydrofoil in unsteady conditions using moving unstructured grids. The efficiency and force coefficients of the flexible flapping foils are determined and presented as a function of Strouhal number.
基金Project supported by the National Natural Science Foundation of China(Grant No.50905040)
文摘The flapping foil based on bionics is a sort of simplified models which imitate the motion of wings or fins of fish or birds. In this paper, a universal kinematic model with three degrees of freedom is adopted and the motion parallel to the flow direction is considered. The force coefficients, the torque coefficient, and the flow field characteristics are extracted and analyzed. Then the propulsive efficiency is calculated. The influence of the motion parameters on the hydrodynamic performance of the bionic foil is studied. The results show that the motion parameters play important roles in the hydrodynamic performance of the flapping foil. To validate the reliability of the numerical method used in this paper, an experiment platform is designed and verification experiments are carried out. Through the comparison, it is found that the numerical results compare well with the experimental results, to show that the adopted numerical method is reliable. The results of this paper provide a theoretical reference for the design of underwater vehicles based on the flapping propulsion.
基金financially supported by the National Natural Science Foundation of China(Grant No.51479039)China Postdoctoral Science Foundation(Grant No.2013M540271)
文摘This paper introduces a newly developed Unmanned Wave Glide Vehicle (UWGV), which is driven only by extracting energy from gravity waves, and presents a comprehensive study on the propulsion performance of the UWGV's propulsor-Wave Glide Propulsor (WGP) in a regular wave. By simplifying the WGP as six 2D tandem asynchronous flapping foils (TAFFs), a CFD method based on Navier-Stokes equations was first used to analyze the hydrodynamic performance of TAFFs with different parameters of non-dimensional wave length rn and non-dimensional wave height n. Then, a series of hydrodynamic experiments were performed. The computational results agree well with the experimental results when n〈0.07 and both of them show the thrust force and input power of the WGP are larger at smaller m or larger n. By analyzing the flow field of TAFFs, we can see that a larger m is beneficial to the forming, merging and shredding of the TAFFs' vortices; as TAFFs are arranged in tandem and have the same motions, the leading edge vortex and wake vortex of the TAFFs are meaningful for improving the thrust force of their adjacent ones.
基金Project supported by the National Natural Science Foun-dation of China(Grant No.11372275)the Program for New Century Excellent Talents in University
文摘The direct-forcing fictitious domain method is extended to simulate the locomotion of a passively pitching foil. Our study focuses on the hysteresis phenomenon that the critical frequency for the reverse of the locomotion direction of the wing in case of decreasing frequency is smaller than that in case of increasing frequency. In our simulations, the hysteresis phenomenon is produced by imposing different initial conditions at a same frequency. Our results indicate that the ratio of the heaving amplitudes of two foil edges is crucial to the direction of the foil's horizontal motion, and the amplitude of the leading edge is generally smaller. The critical frequencies for the reverse of the locomotion direction are increased, when the foil-fluid density ratio is decreased or the spring constant is increased. The critical frequencies in the bi-stability regime also depend on the initial velocity imposed, and the hysteresis loop generally becomes larger if the initial velocities are closer to the terminal locomotion velocities of the foil.