The flapwise bending vibrational equations of tapered Rayleigh beam are derived based on Hamilton’s principle.The corresponding vibrational characteristics of rotating tapered Rayleigh beams are investigated via vari...The flapwise bending vibrational equations of tapered Rayleigh beam are derived based on Hamilton’s principle.The corresponding vibrational characteristics of rotating tapered Rayleigh beams are investigated via variational iteration method(VIM).Natural frequencies and corresponding mode shapes are examined under various rotation speed,taper ratio and slenderness ratio focusing on two types of tapered beam.The convergence of VIM is examined as part of the paper.Validation of VIM solution is made by referring to results available in other literature and corresponding results show that VIM is capable of yielding precise results in a very efficient way.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51779265 and 52171285)Open Project Program of State Key Laboratory of Structural Analysis for Industrial Equipment(Grant No.GZ19119)+3 种基金Science Foundation of China University of Petroleum,Beijing(Grant No.2462020YXZZ045)Open Project Program of Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deepwater Oil&Gas Development(Grant No.BIPT2018002)Special Funding for Promoting Economic Development in Guangdong Province(Grant No.GDOE[2019]A39)Opening fund of State Key Laboratory of Hydraulic Engineering Simulation and Safety(Grant No.HESS-1411)。
文摘The flapwise bending vibrational equations of tapered Rayleigh beam are derived based on Hamilton’s principle.The corresponding vibrational characteristics of rotating tapered Rayleigh beams are investigated via variational iteration method(VIM).Natural frequencies and corresponding mode shapes are examined under various rotation speed,taper ratio and slenderness ratio focusing on two types of tapered beam.The convergence of VIM is examined as part of the paper.Validation of VIM solution is made by referring to results available in other literature and corresponding results show that VIM is capable of yielding precise results in a very efficient way.