Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the ...Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products.展开更多
With the rise of probiotics fermentation in food industry,fermented foods have attracted worldwide attention.In this study,protective effects of Rosa roxburghii&edible fungus fermentation broth(REFB)on immune func...With the rise of probiotics fermentation in food industry,fermented foods have attracted worldwide attention.In this study,protective effects of Rosa roxburghii&edible fungus fermentation broth(REFB)on immune function and gut health in Cyclophosphamide induced immunosuppressed mice were investigated.Results showed that REFB could improve the immune organ index,and promote the proliferation and differentiation of splenic T lymphocytes.In addition,it attenuated intestinal mucosal damage and improved intestinal cellular immunity.REFB administration also up-regulated the expression of IL-4,INF-γ,TNF-α,T-bet and GATA-3 mRNA in small intestine.Furthermore,administration of REFB modulated gut microbiota composition and increased the relative abundance of beneficial genus,such as Bacteroides.It also increased the production of fecal short-chain fatty acids.These indicate that REFB has the potential to improve immunity,alleviate intestinal injury and regulate gut microbiota in immunosuppressed mice.展开更多
Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were...Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were extracted from fermented and non-fermented L.edodes and purified via DEAE-52 and Sephadex G-100.The components designated F-LEP-2a and NF-LEP-2a were analyzed by FT-IR,HPGPC,HPAEC,SEM,GC-MS and NMR.The results revealed that probiotic fermentation increased the molecular weight from 1.16×10^(4) Da to 1.87×10^(4) Da and altered the proportions of glucose,galactose and mannose,in which glucose increased from 45.94%to 48.16%.Methylation analysis and NMR spectra indicated that F-LEP-2a and NF-LEP-2a had similar linkage patterns.Furthermore,their immunomodulatory activities were evaluated with immunosuppressive mice.NF-LEP and F-LEP improved immune organ indices,immunoglobulin(Ig G and Ig M)and cytokines concentrations;restored the antioxidation capacity of liver;and maintained the balance of gut microbiota.F-LEP displayed better moderating effects on the spleen index,immunoglobulin,cytokines and the diversity of gut microbiota than NF-LEP(200,400 mg/kg).Our study provides an efficient and environment-friendly way for the structural modification of polysaccharides,which helps to enhance their biological activity and promote their wide application in food,medicine and other fields.展开更多
Biogasification of coal is important for clean utilization of coal. Experiments on the fermentation of single lignite, single straw and their mixture were performed to explore the variation characteristics of gas prod...Biogasification of coal is important for clean utilization of coal. Experiments on the fermentation of single lignite, single straw and their mixture were performed to explore the variation characteristics of gas production potential, microbial community and methanogenic metabolic pathways of mixture. Research has shown that mixed fermentation of lignite and straw significantly promoted biomethane production. The abundance of hydrolytic acidifying functional bacteria genera (Sphaerochaeta, Lentimicrobium) in mixed fermentation was higher than that in the fermentation of single lignite and single straw. The abundance of some key CAZy metabolic enzyme gene sequences in mixed fermentation group was increased, which was favorable to improve methane production. Aceticlastic methanogenesis was the most critical methanogenic pathway and acetic acid pathway was more competitive in methanogenic mode during peak fermentation. Macrogenomics provided theoretical support for the claim that mixed fermentation of coal and straw promoted biomethane metabolism, which was potentially valuable in expanding methanogenesis from mixed fermentation of lignite with different biomasses.展开更多
Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances inclu...Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances including the formation of secondary metabolites.Saccharomyces cerevisiae,the main yeast responsible for fermentation,has been studied extensively regarding nitrogen impacts.On the other hand,a similar study for non-Saccharomyces yeasts,whose contributions to winemaking have gradually been acknowledged,remains to be fully explored,with a few studies being reported.This review starts by discussing nitrogen impacts on non-Saccharomyces yeast growth and fermentation kinetics in different case scenarios,then proceeds to summarize the nitrogen preferences of individual yeast strains with regulation mechanisms elucidated by recent studies.Detailed discussions on the influences on the production of volatile compounds and proposed pathways therein are made,followed by future work suggested as the final section.In summarizing the nitrogen impacts on non-Saccharomyces yeasts throughout alcoholic fermentation,this review will be helpful in obtaining a more comprehensive view on these non-conventional wine yeasts in terms of nutrient requirements and corresponding volatile production.Research gaps will therefore be elucidated for future research.展开更多
Sourdough is often considered a healthy choice and quality improver for use in cereal production due to its unique microbial composition and fermentation properties.During sourdough fermentation of cereals,biotransfor...Sourdough is often considered a healthy choice and quality improver for use in cereal production due to its unique microbial composition and fermentation properties.During sourdough fermentation of cereals,biotransformation of nutrients occurs,resulting in notable changes to proteins,carbohydrates,fats,vitamins,and minerals.Each nutrient undergoes specific transformations,providing various advantages for human health.Proteins undergo hydrolysis to produce small molecular weight peptides and amino acids that are more easily digested and absorbed by the human body.Carbohydrates break down to improve the digestibility and absorption of cereals and lower the glycemic index.Fatty acids experience oxidation to produce new substances with health benefits.Additionally,the application of sourdough fermentation can enhance the texture,flavor,and nutritional value of cereal foods while also extending their shelf life and improving food safety.In conclusion,sourdough fermentation has a broad range of applications in cereal food processing.Further research is encouraged to investigate the mechanisms and processes of sourdough fermentation to develop even more nutritious,healthy,and flavorful cereal-based foods.展开更多
Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-en...Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-enriched Brassica napus L.Significant increases were observed after fermentation in total sugars,reducing sugars,soluble proteins,total phenolic content(TPC),and total flavonoid content(TFC).The organic Se was retained at a concentration of 54.75 mg/g in the freeze-dried sample.Principal component analysis and cluster analysis showed good separation between the FFS and unfermented(FS)groups.Fragrant 2-ethyloxetane had the highest content among all volatiles,while sinapine had the highest content among all phenolic compounds.The fermentation process showed remarkable improvement in the abundance and concentration of volatile compounds and phenolic contents,making FFS exhibit strong antioxidant activity and inhibitory capacity againstα-glucosidase activity.The bioaccessibility of phenolic compounds was significantly greater in FFS compared to FS.ADMET analysis revealed that the majority of phenolic compounds contained in FFS did not exhibit mutagenicity toxicity,hepatotoxicity,skin sensitization,or blood-brain barrier penetration,indicating a favorable level of biosafety.Overall,our study provides a new insight into the further utilization of Se-enriched Brassica napus L.in foods.展开更多
Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but...Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but a food-grade starter culture with glucosinolates degradation capacity is required. In this study, 46 strains of lactic acid bacteria from traditional paocai brines were screened for their ability to glucosinolate degradation. The results showed that more than 50% of the strains significantly degraded glucosinolates. Two strains of Lactiplantibacillus(p7 and s7) with high capacity of glucosinolates degradation through producing enzymes were identified. Then,an optimized condition for rapeseed meal fermentation by p7 was established to degrade glucosinolates, which can achieve about 80% degradation. UPLC/Q-TOF-MS analysis showed that the degradation rate of individual glucosinolates was different and the degradation rate of gluconapin and progoitrin in rapeseed meal can reach more than 90%. Meanwhile, fermentation with p7 can improve safety of rapeseed meal by inhibiting the growth of Enterobacteriaceae and improve its nutritional properties by degrading phytic acid. The in vitro digestion experiments showed that the content of glucosinolates in rapeseed meal decreased significantly during gastric digestion. Meanwhile, fermentation with p7 can greatly improve the release of soluble protein and increase the contents of free essential amino acids, such as lysine(increased by 12 folds) and methionine(increased by 10 folds).展开更多
Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lac...Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lactic acid bacteria(LAB)were used to ferment Brassica napus BP for alleviating its allergenicity.Four novel allergens(glutaredoxin,oleosin-B2,catalase and lipase)were identified with significant decreases in LAB-fermented BP(FBP)than natural BP by proteomics.Meanwhile,metabolomics analysis showed significant increases of 28 characteristic oligopeptides and amino acids in FBP versus BP,indicating the degradation of LAB on allergens.Moreover,FBP showed alleviatory effects in BALB/c mice,which relieved pathological symptoms and lowered production of allergic mediators.Microbial high-throughput sequencing analysis showed that FBP could regulate gut microbiota and metabolism to strengthen immunity,which were closely correlated with the alleviation of allergic reactivity.These findings could contribute to the development and utilization of hypoallergenic BP products.展开更多
This study aimed to investigate microbial succession and metabolic dynamics during the traditional fermentation of Hongqu aged vinegar,and explore the core functional microbes closely related to the formation of flavo...This study aimed to investigate microbial succession and metabolic dynamics during the traditional fermentation of Hongqu aged vinegar,and explore the core functional microbes closely related to the formation of flavor components.Microbiome analysis demonstrated that Lactobacillus,Acetobacter,Bacillus,Enterobacter,Lactococcus,Leuconostoc and Weissella were the predominant bacterial genera,while Aspergillus piperis,Aspergillus oryzae,Monascus purpureus,Candida athensensis,C.xylopsoci,Penicillium ochrosalmoneum and Simplicillium aogashimaense were the predominant fungal species.Correlation analysis revealed that Acetobacter was positively correlated with the production of tetramethylpyrazine,acetoin and acetic acid,Lactococcus showed positive correlation with the production of 2-nonanone,2-heptanone,ethyl caprylate,ethyl caprate,1-hexanol,1-octanol and 1-octen-3-ol,C.xylopsoci and C.rugosa were positively associated with the production of diethyl malonate,2,3-butanediyl diacetate,acetoin,benzaldehyde and tetramethylpyrazine.Correspondingly,non-volatile metabolites were also detected through ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry.A variety of amino acids and functional dipeptides were identified during the traditional brewing of Hongqu aged vinegar.Correlation analysis revealed that Lactobacillus was significantly associated with DL-lactate,indolelactic acid,D-(+)-3-phenyllactic acid,pimelic acid,pregabalin and 3-aminobutanoic acid.This study is useful for understanding flavor formation mechanism and developing effective strategies for the suitable strains selection to improve the flavor quality of Hongqu aged vinegar.展开更多
[Objectives]To study the optimum conditions of solid fermentation of natto with antioxidant function as an index.[Methods]Single factor experiment and orthogonal experiment were designed to study the effects of temper...[Objectives]To study the optimum conditions of solid fermentation of natto with antioxidant function as an index.[Methods]Single factor experiment and orthogonal experiment were designed to study the effects of temperature,time,initial pH and inoculum amount on the antioxidant activity of natto solid fermentation.The optimum conditions of natto solid fermentation were determined and the antioxidant ac-tivity of natto extract was compared.[Results]The optimal fermentation conditions were as follows:temperature 32℃,initial pH 7.0,inocu-lation amount 8%,fermentation time 32 h.The hydroxyl radical scavenging rate of natto solid fermentation crude extract was the highest,which was 82.7%.The optimized nato fermentation extract showed stronger scavenging ability for-OH and O,:,and showed obvious dose-effect relationship.ICso was 3.63 and 4.24 mg/mL,respectively,and the scavenging efficiency was 1.3 and 1.9 times higher than that of the unoptimized fermentation extract,respectively.[Conclusions]Natto is rich in nattokinase and other functional factors,and its antioxidant ac-tivity can be improved by optimizing fermentation technology,so that natto products can be widely used,including cosmetic raw materials,nat-to skin care soap,health food and medicine,etc.,and have a broader development prospect.展开更多
Despite its low resistance to humidity, adobe remains the most widely used material for housing construction, particularly in developing countries. The present study aims to assess different modes of use of fermented ...Despite its low resistance to humidity, adobe remains the most widely used material for housing construction, particularly in developing countries. The present study aims to assess different modes of use of fermented RH and to evaluate their influence on the behavior of raw earth for application in plaster. The influences of two types of RH are evaluated: granular rice husk (RHg) and powdered RH (RHp). The clay mainly consists of clay (40%), silt (22%), and sand (38.4%), with a small proportion of gravel (0.24%). Its liquidity limit is 40% and the plasticity index is 26.5%. The mixtures were designed using earth and each of the two rice husks at the volumetric content of 10%, 15% and 20% of the total volume mixed with water 36.5%, 38.5% and 40.3% and fermented for three weeks. Each fermented mixture was added to the soil to form the paste, and 40 × 40 × 160 mm<sup>3</sup> test speciments were made for characterization. The results generally show an improvement in the physico-mechanical properties and water resistance of the mortars containing fermented RH, with an optimal content between 10% and 15%. The powdered RH improved the performance of the mortar better than granular RH.展开更多
In the present study,the effects of cooked rice(CR)with added fructo-oligosaccharide(FOS)on faecal flora were studied by a simulated in vitro digestion and fermentation method.The total carbohydrate content,p H,and s ...In the present study,the effects of cooked rice(CR)with added fructo-oligosaccharide(FOS)on faecal flora were studied by a simulated in vitro digestion and fermentation method.The total carbohydrate content,p H,and s hort-chain fatty acids(SCFAs)were determined during in vitro digestion and fermentation.The change in the bacterial phase distribution after the fermentation was also analysed.The results showed that t he total carbohydrate content of the CR with added FOS(FCR)significantly decreased during the simulated digestion.Meanwhile,the p H of the FCR decreased and the SCFAs concentration increased significantly compared to those of the CR during the simulated fermentation.In addition,the FCR showed the advantage of promoting beneficial bacteria,such as Bifidobacterium and Lactobacillus,and inhibiting harmful bacteria,such as Bacteroides and Klebsiella compared to the CR.Therefore,the FOS as a prebiotic could be recommended to produce the high-quality healthy rice food.展开更多
In this study,the in vitro digestion and fermentation of two intra-polysaccharide fractions(IPS1 and IPS2)from Paecilomyces cicadae TJJ1213 were investigated.The constituent monosaccharides of IPS1 and IPS2 were not c...In this study,the in vitro digestion and fermentation of two intra-polysaccharide fractions(IPS1 and IPS2)from Paecilomyces cicadae TJJ1213 were investigated.The constituent monosaccharides of IPS1 and IPS2 were not changed after simulated saliva,gastric and small intestinal digestion.However,they can be hydrolyzed and utilized by gut microbiota,and short-chain fatty acids(SCFAs)level were increased after IPS1 and IPS2 treatments.Furthermore,16 S r RNA sequencing analysis of fermentation samples were performed.Alpha-diversity,beta-diversity and taxonomic composition differences analysis revealed that IPS1 and IPS2 promoted the proliferation of beneficial bacteria and modulated the overall structure of gut microbiota.Taxonomic comparison analysis found that IPS1 increased the relative abundances of beneficial bacteria including Megamonas,Bifidobacterium and Lactobacillus,while IPS2 could increase the abundance of Bacteroides,Parabacteroides and Phascolarctobacterium.In addition,they can also decrease the levels of pathogenic bacteria containing Escherichia-Shigella,Klebsiella and Fusobacterium.These results indicated that IPS from Paecilomyces cicadae TJJ1213 could be used as potential candidates for new functional foods.展开更多
Background Ferulic acid esterase(FAE)-secreting Lactiplantibacillus plantarum A1(Lp A1)is a promising silage inoculant due to the FAE’s ability to alter the plant cell wall structure during ensiling,an action that is...Background Ferulic acid esterase(FAE)-secreting Lactiplantibacillus plantarum A1(Lp A1)is a promising silage inoculant due to the FAE’s ability to alter the plant cell wall structure during ensiling,an action that is expected to improve forage digestibility.However,little is known regarding the impacts of Lp A1 on rumen microbiota.Our research assessed the influences of Lp A1 in comparison to a widely adopted commercial inoculant Lp MTD/1 on alfalfa’s ensilage,in vitro rumen incubation and microbiota.Results Samples of fresh and ensiled alfalfa treated with(either Lp A1 or Lp MTD/1)or without additives(as control;CON)and ensiled for 30,60 and 90 d were used for fermentation quality,in vitro digestibility and batch culture study.Inoculants treated silage had lower(P<0.001)pH,acetic acid concentration and dry matter(DM)loss,but higher(P=0.001)lactic acid concentration than the CON during ensiling.Compared to the CON and Lp MTD/1,silage treated with Lp A1 had lower(P<0.001)aNDF,ADF,ADL,hemicellulose,and cellulose contents and higher(P<0.001)free ferulic acid concentration.Compared silage treated with Lp MTD/1,silage treated with Lp A1 had significantly(P<0.01)improved ruminal gas production and digestibility,which were equivalent to those of fresh alfalfa.Realtime PCR analysis indicated that Lp A1 inoculation improved the relative abundances of rumen’s total bacteria,fungi,Ruminococcus albus and Ruminococcus flavefaciens,while the relative abundance of methanogens was reduced by Lp MTD/1 compared with CON.Principal component analysis of rumen bacterial 16S rRNA gene amplicons showed a clear distinction between CON and inoculated treatments without noticeable distinction between Lp A1 and Lp MTD/1 treatments.Comparison analysis revealed differences in the relative abundance of some bacteria in different taxa between Lp A1 and Lp MTD/1 treatments.Silage treated with Lp A1 exhibited improved rumen fermentation characteristics due to the inoculant effects on the rumen microbial populations and bacterial community.Conclusions Our findings suggest that silage inoculation of the FAE-producing Lp A1 could be effective in improving silage quality and digestibility,and modulating the rumen fermentation to improve feed utilization.展开更多
The presence of impurities in the bioethanol fermentation broth should be removed to mitigate any possible ineffective refining processes as well as to enhance bioethanol production. In this study, a prefiltration pro...The presence of impurities in the bioethanol fermentation broth should be removed to mitigate any possible ineffective refining processes as well as to enhance bioethanol production. In this study, a prefiltration process was carried out for separating fermentation yeast cells and residual substrates using a microfiltration membrane. Hydrophilic polyvinylidene fluoride-graphene oxide/titanium dioxide(PVDF-GO/TiO_(2)) membrane with polyvinyl alcohol(PVA) surface-coating modification was fabricated and characterized. Membrane modification attempts have succeeded in increasing the hydrophilicity as indicated by contact angle decline from 72.10° to 34.83° and affinity towards water leading to higher water permeability. The performance evaluation showed that 90.77% of unwanted by-products(yeast cells and residual substrate) can be removed. This high rejection is also followed by a high and stable flux performance at 40.20 L·m^(-2)·h^(-1) where the flux was increased by 13 times compared to that of the neat membrane. The PVA-coated PVDF-GO/TiO2showed the best anti-biofouling performance with a flux recovery ratio after 5 days incubation(FRR5d) of 93.55%. This membrane material has excellent prospects in future membrane development for either in-situ application or as a pre-filtration in the fermentation process to separate living cells and residual substrates before being further processed in the refining processes.展开更多
The aim of this study was to design a new emulsion liquid membrane(ELM)system for the separation of succinic acid from aqueous solutions.The concentration of succinic acid varied from 20 to 60 mmol·L^(-1).The pre...The aim of this study was to design a new emulsion liquid membrane(ELM)system for the separation of succinic acid from aqueous solutions.The concentration of succinic acid varied from 20 to 60 mmol·L^(-1).The prepared ELM system includes tributylamine(TBA)as a carrier,commercial kerosene as a solvent,Span 80 as a surfactant,and Na2CO3as a stripping agent.In order to control the membrane swelling,different values of cyclohexanone were added to the membrane phase.The effect of various empirical variables on the extraction of the succinic acid such as acid concentration in the feed solution,initial feed concentration,carrier concentration,the stirring speed of the extraction,Na2CO3,surfactant,and cyclohexanone concentrations,and treat ratio in the ELM system.The best result was obtained when TBA was used as the carrier.The final acid extraction efficiency was independent of pH variations of the aqueous feed solution.The extraction of succinic acid solution with a concentration of 40 mmol·L^(-1)was improved by increasing the treat ratio 1:7-1:3,stripping phase concentration 0.5-1.5 mol·L^(-1),stirring speed 300-500 r·min^(-1)and cyclohexanone concentration in the membrane phase 1.2-1.6 mol·L^(-1).No considerable effect on the extraction rate was observed for the carrier concentration in the membrane phase.But,the surfactant concentration in the feed phase showed a dual effect on the extraction efficiency.展开更多
Wheat flour,as the most important source of food globally,is one of the most common causative agents of food allergy.This study aimed to investigate the effects of fermentation on wheat protein digestibility and aller...Wheat flour,as the most important source of food globally,is one of the most common causative agents of food allergy.This study aimed to investigate the effects of fermentation on wheat protein digestibility and allergenicity.Protein digestibility were evaluated using the sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and enzyme-linked immunosorbent assay.The effect of protein on intestinal permeability was investigated by Caco-2 cell monolayers.Co-culture fermentation with Pediococcus acidilactici XZ31 and yeast leads to improvement in digestibility of wheat protein compared to single strain fermentation.Fermentation leads to a decrease in albumin/globulin antigenicity and an increase in gluten R5 reactivity,with the most significant changes in the co-culture group.Digestion strengthen the decrease of protein antigenicity and counteracts the difference in antigenicity induced by fermentation between groups.However,pretreatment with P.acidilactici XZ31 reduces the amount of allergens across Caco-2 monolayer and attenuates the gluten-induced increase in permeability of Caco-2 cell monolayer by reducing actin polymerization and villous atrophy.Co-culture fermentation reduces gluten-induced cell monolayer damage to a greater extent than P.acidilactici XZ31 monoculture.These results gives valuable insight into the effects of P.acidilactici XZ31 fermentation on the allergenicity and toxicity of wheat proteins,which contribute to promoting the application of multi-strain leavening agent in hypoallergenic and gluten-free wheat products.展开更多
This study investigated the effects of dioscorea opposite waste(DOW) on the growth performance, blood parameters, rumen fermentation and rumen microbiota of weaned lambs. Sixty healthy weaned Small-Tailed Han lambs(ma...This study investigated the effects of dioscorea opposite waste(DOW) on the growth performance, blood parameters, rumen fermentation and rumen microbiota of weaned lambs. Sixty healthy weaned Small-Tailed Han lambs(male,(22.68±2.56) kg initially) were used as the experimental animals. Four levels of concentrate: 0(control, CON), 10%(DOW1), 15%(DOW2) and 20%(DOW3), were replaced with DOW in the basal diet as experimental treatments. The results showed that lambs fed the DOW2 diet had a higher(P<0.05) dry matter intake(DMI) than the other groups. There was no significant difference(P>0.05) among DOW groups in average daily weight gain(ADG), and replacing concentrate with DOW linearly or quadratically increased(P<0.05) the ADG, while lambs fed the DOW2 diet showed greater(P<0.05) ADG than the CON group. The relative plasma concentration of growth hormone(GH), insulin like growth factor-1(IGF-1) and insulin were affected by DOW, replacing concentrate with DOW linearly or quadratically(P<0.05) enhanced the plasma concentration of GH, IGF-1 and insulin, which was significantly higher(P<0.05) in the DOW2 group than in the CON, DOW1 and DOW3 groups. In addition, the DOW treatment showed a lower(P<0.05) concentration of blood urea nitrogen(BUN) than the CON group. Replacing concentrate with DOW quadratically decreased(P<0.05) the ruminal ammonia nitrogen(NH3-N) and increased(P<0.05) the total of volatile fatty acids(TVFAs) at 0 and 4 h after feeding as well as linearly decreased(P<0.05) the NH3-N at 8 h after feeding. Replacing concentrate with DOW linearly decreased(P<0.05) the propionate and increased the aceate before feeding, and linearly decreased(P<0.05) propionate and quadratically increased(P<0.05) the aceate at 4 and 8 h after feeding. Lambs fed the DOW2 diet increased the phylum Firmicutes and genera Succiniclasticum and Ruminococcus_1 groups, whereas decreased(P<0.05) the relative abundance of phylum Deferribacteres and genera intestinimonas and Ruminiclostridium. In summary, replacing the concentrate with 15% DOW was beneficial for improving the rumen fermentation and ADG by increasing the DMI and modulating the rumen microbial community.展开更多
This paper first introduced the silage fermentation technology,including the selection of strains and activation expansion technology,the screening of high-quality fermentation raw materials,and the comparative experi...This paper first introduced the silage fermentation technology,including the selection of strains and activation expansion technology,the screening of high-quality fermentation raw materials,and the comparative experiment of fermentation process.It discussed feeding methods for sows and growing-finishing pigs at different breeding stages.In addition,it analyzed the effects of fermented silage on the growth performance of local pigs at various stages.Finally,it is concluded that silage fermentation can improve the water retention performance of pork,improve the quality of pork from local pigs,increase economic benefits,and achieve the purpose of saving costs and increasing efficiency.展开更多
基金supported by the National Natural Science Foundation of China(32001733)the Earmarked fund for CARS(CARS-47)+3 种基金Guangxi Natural Science Foundation Program(2021GXNSFAA196023)Guangdong Basic and Applied Basic Research Foundation(2021A1515010833)Young Talent Support Project of Guangzhou Association for Science and Technology(QT20220101142)the Special Scientific Research Funds for Central Non-profit Institutes,Chinese Academy of Fishery Sciences(2020TD69)。
文摘Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products.
基金The financial supports from the Key Program of the National Natural Science Foundation of China(32130082)Jiangxi High Level Talent Cultivation Project(20204BCJ24006)+1 种基金Project of State Key Laboratory of Food Science and Technology(SKLF-ZZA-201911)Central Government Guide Local Special Fund Project for Scientific and Technological Development of Jiangxi Province(20212ZDD02008)。
文摘With the rise of probiotics fermentation in food industry,fermented foods have attracted worldwide attention.In this study,protective effects of Rosa roxburghii&edible fungus fermentation broth(REFB)on immune function and gut health in Cyclophosphamide induced immunosuppressed mice were investigated.Results showed that REFB could improve the immune organ index,and promote the proliferation and differentiation of splenic T lymphocytes.In addition,it attenuated intestinal mucosal damage and improved intestinal cellular immunity.REFB administration also up-regulated the expression of IL-4,INF-γ,TNF-α,T-bet and GATA-3 mRNA in small intestine.Furthermore,administration of REFB modulated gut microbiota composition and increased the relative abundance of beneficial genus,such as Bacteroides.It also increased the production of fecal short-chain fatty acids.These indicate that REFB has the potential to improve immunity,alleviate intestinal injury and regulate gut microbiota in immunosuppressed mice.
基金supported by grants from the National Key R&D Program of China(2019YFC1606701)。
文摘Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were extracted from fermented and non-fermented L.edodes and purified via DEAE-52 and Sephadex G-100.The components designated F-LEP-2a and NF-LEP-2a were analyzed by FT-IR,HPGPC,HPAEC,SEM,GC-MS and NMR.The results revealed that probiotic fermentation increased the molecular weight from 1.16×10^(4) Da to 1.87×10^(4) Da and altered the proportions of glucose,galactose and mannose,in which glucose increased from 45.94%to 48.16%.Methylation analysis and NMR spectra indicated that F-LEP-2a and NF-LEP-2a had similar linkage patterns.Furthermore,their immunomodulatory activities were evaluated with immunosuppressive mice.NF-LEP and F-LEP improved immune organ indices,immunoglobulin(Ig G and Ig M)and cytokines concentrations;restored the antioxidation capacity of liver;and maintained the balance of gut microbiota.F-LEP displayed better moderating effects on the spleen index,immunoglobulin,cytokines and the diversity of gut microbiota than NF-LEP(200,400 mg/kg).Our study provides an efficient and environment-friendly way for the structural modification of polysaccharides,which helps to enhance their biological activity and promote their wide application in food,medicine and other fields.
文摘Biogasification of coal is important for clean utilization of coal. Experiments on the fermentation of single lignite, single straw and their mixture were performed to explore the variation characteristics of gas production potential, microbial community and methanogenic metabolic pathways of mixture. Research has shown that mixed fermentation of lignite and straw significantly promoted biomethane production. The abundance of hydrolytic acidifying functional bacteria genera (Sphaerochaeta, Lentimicrobium) in mixed fermentation was higher than that in the fermentation of single lignite and single straw. The abundance of some key CAZy metabolic enzyme gene sequences in mixed fermentation group was increased, which was favorable to improve methane production. Aceticlastic methanogenesis was the most critical methanogenic pathway and acetic acid pathway was more competitive in methanogenic mode during peak fermentation. Macrogenomics provided theoretical support for the claim that mixed fermentation of coal and straw promoted biomethane metabolism, which was potentially valuable in expanding methanogenesis from mixed fermentation of lignite with different biomasses.
基金supported by grants from the National Natural Science Foundation of China(32172340)。
文摘Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances including the formation of secondary metabolites.Saccharomyces cerevisiae,the main yeast responsible for fermentation,has been studied extensively regarding nitrogen impacts.On the other hand,a similar study for non-Saccharomyces yeasts,whose contributions to winemaking have gradually been acknowledged,remains to be fully explored,with a few studies being reported.This review starts by discussing nitrogen impacts on non-Saccharomyces yeast growth and fermentation kinetics in different case scenarios,then proceeds to summarize the nitrogen preferences of individual yeast strains with regulation mechanisms elucidated by recent studies.Detailed discussions on the influences on the production of volatile compounds and proposed pathways therein are made,followed by future work suggested as the final section.In summarizing the nitrogen impacts on non-Saccharomyces yeasts throughout alcoholic fermentation,this review will be helpful in obtaining a more comprehensive view on these non-conventional wine yeasts in terms of nutrient requirements and corresponding volatile production.Research gaps will therefore be elucidated for future research.
基金supported by the Graduate Education Innovation and Quality Improvement Project of Henan University(No.SYLYC2023185).
文摘Sourdough is often considered a healthy choice and quality improver for use in cereal production due to its unique microbial composition and fermentation properties.During sourdough fermentation of cereals,biotransformation of nutrients occurs,resulting in notable changes to proteins,carbohydrates,fats,vitamins,and minerals.Each nutrient undergoes specific transformations,providing various advantages for human health.Proteins undergo hydrolysis to produce small molecular weight peptides and amino acids that are more easily digested and absorbed by the human body.Carbohydrates break down to improve the digestibility and absorption of cereals and lower the glycemic index.Fatty acids experience oxidation to produce new substances with health benefits.Additionally,the application of sourdough fermentation can enhance the texture,flavor,and nutritional value of cereal foods while also extending their shelf life and improving food safety.In conclusion,sourdough fermentation has a broad range of applications in cereal food processing.Further research is encouraged to investigate the mechanisms and processes of sourdough fermentation to develop even more nutritious,healthy,and flavorful cereal-based foods.
基金supported by the National Natural Science Foundation of China(U21A20274,31972041)the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI)+1 种基金Earmarked Fund for China Agriculture Research System(CARS-12)Support Enterprise Technology Innovation and Development Projects(2021BLB151)。
文摘Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-enriched Brassica napus L.Significant increases were observed after fermentation in total sugars,reducing sugars,soluble proteins,total phenolic content(TPC),and total flavonoid content(TFC).The organic Se was retained at a concentration of 54.75 mg/g in the freeze-dried sample.Principal component analysis and cluster analysis showed good separation between the FFS and unfermented(FS)groups.Fragrant 2-ethyloxetane had the highest content among all volatiles,while sinapine had the highest content among all phenolic compounds.The fermentation process showed remarkable improvement in the abundance and concentration of volatile compounds and phenolic contents,making FFS exhibit strong antioxidant activity and inhibitory capacity againstα-glucosidase activity.The bioaccessibility of phenolic compounds was significantly greater in FFS compared to FS.ADMET analysis revealed that the majority of phenolic compounds contained in FFS did not exhibit mutagenicity toxicity,hepatotoxicity,skin sensitization,or blood-brain barrier penetration,indicating a favorable level of biosafety.Overall,our study provides a new insight into the further utilization of Se-enriched Brassica napus L.in foods.
基金provided by the Jiangsu Provincial Key Research and Development Program (Grant No. BE2022362)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but a food-grade starter culture with glucosinolates degradation capacity is required. In this study, 46 strains of lactic acid bacteria from traditional paocai brines were screened for their ability to glucosinolate degradation. The results showed that more than 50% of the strains significantly degraded glucosinolates. Two strains of Lactiplantibacillus(p7 and s7) with high capacity of glucosinolates degradation through producing enzymes were identified. Then,an optimized condition for rapeseed meal fermentation by p7 was established to degrade glucosinolates, which can achieve about 80% degradation. UPLC/Q-TOF-MS analysis showed that the degradation rate of individual glucosinolates was different and the degradation rate of gluconapin and progoitrin in rapeseed meal can reach more than 90%. Meanwhile, fermentation with p7 can improve safety of rapeseed meal by inhibiting the growth of Enterobacteriaceae and improve its nutritional properties by degrading phytic acid. The in vitro digestion experiments showed that the content of glucosinolates in rapeseed meal decreased significantly during gastric digestion. Meanwhile, fermentation with p7 can greatly improve the release of soluble protein and increase the contents of free essential amino acids, such as lysine(increased by 12 folds) and methionine(increased by 10 folds).
基金supported by the National Natural Science Foundation of China(32102605)the Agricultural Science and Technology Innovation Program under Grant(CAAS-ASTIP-2020-IAR)。
文摘Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lactic acid bacteria(LAB)were used to ferment Brassica napus BP for alleviating its allergenicity.Four novel allergens(glutaredoxin,oleosin-B2,catalase and lipase)were identified with significant decreases in LAB-fermented BP(FBP)than natural BP by proteomics.Meanwhile,metabolomics analysis showed significant increases of 28 characteristic oligopeptides and amino acids in FBP versus BP,indicating the degradation of LAB on allergens.Moreover,FBP showed alleviatory effects in BALB/c mice,which relieved pathological symptoms and lowered production of allergic mediators.Microbial high-throughput sequencing analysis showed that FBP could regulate gut microbiota and metabolism to strengthen immunity,which were closely correlated with the alleviation of allergic reactivity.These findings could contribute to the development and utilization of hypoallergenic BP products.
基金funded by Outstanding Talent of“Qishan Scholar”of Fuzhou University of China(GXRC21049)the Open Project Program of the Beijing Laboratory of Food Quality and Safety,Beijing Technology and Business University(BTBU)(FQS-201802,FQS-202008).
文摘This study aimed to investigate microbial succession and metabolic dynamics during the traditional fermentation of Hongqu aged vinegar,and explore the core functional microbes closely related to the formation of flavor components.Microbiome analysis demonstrated that Lactobacillus,Acetobacter,Bacillus,Enterobacter,Lactococcus,Leuconostoc and Weissella were the predominant bacterial genera,while Aspergillus piperis,Aspergillus oryzae,Monascus purpureus,Candida athensensis,C.xylopsoci,Penicillium ochrosalmoneum and Simplicillium aogashimaense were the predominant fungal species.Correlation analysis revealed that Acetobacter was positively correlated with the production of tetramethylpyrazine,acetoin and acetic acid,Lactococcus showed positive correlation with the production of 2-nonanone,2-heptanone,ethyl caprylate,ethyl caprate,1-hexanol,1-octanol and 1-octen-3-ol,C.xylopsoci and C.rugosa were positively associated with the production of diethyl malonate,2,3-butanediyl diacetate,acetoin,benzaldehyde and tetramethylpyrazine.Correspondingly,non-volatile metabolites were also detected through ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry.A variety of amino acids and functional dipeptides were identified during the traditional brewing of Hongqu aged vinegar.Correlation analysis revealed that Lactobacillus was significantly associated with DL-lactate,indolelactic acid,D-(+)-3-phenyllactic acid,pimelic acid,pregabalin and 3-aminobutanoic acid.This study is useful for understanding flavor formation mechanism and developing effective strategies for the suitable strains selection to improve the flavor quality of Hongqu aged vinegar.
基金Supported by 2023 Zhanjiang Non-funded Science and Technology Research Plan(2023B01023)2022 University-level Education and Teaching Reform Project of Lingnan Normal University(LingShiJiaoWu2022154).Junxia SONG,bachelor degree,experimenter,research fields:physical geography.
文摘[Objectives]To study the optimum conditions of solid fermentation of natto with antioxidant function as an index.[Methods]Single factor experiment and orthogonal experiment were designed to study the effects of temperature,time,initial pH and inoculum amount on the antioxidant activity of natto solid fermentation.The optimum conditions of natto solid fermentation were determined and the antioxidant ac-tivity of natto extract was compared.[Results]The optimal fermentation conditions were as follows:temperature 32℃,initial pH 7.0,inocu-lation amount 8%,fermentation time 32 h.The hydroxyl radical scavenging rate of natto solid fermentation crude extract was the highest,which was 82.7%.The optimized nato fermentation extract showed stronger scavenging ability for-OH and O,:,and showed obvious dose-effect relationship.ICso was 3.63 and 4.24 mg/mL,respectively,and the scavenging efficiency was 1.3 and 1.9 times higher than that of the unoptimized fermentation extract,respectively.[Conclusions]Natto is rich in nattokinase and other functional factors,and its antioxidant ac-tivity can be improved by optimizing fermentation technology,so that natto products can be widely used,including cosmetic raw materials,nat-to skin care soap,health food and medicine,etc.,and have a broader development prospect.
文摘Despite its low resistance to humidity, adobe remains the most widely used material for housing construction, particularly in developing countries. The present study aims to assess different modes of use of fermented RH and to evaluate their influence on the behavior of raw earth for application in plaster. The influences of two types of RH are evaluated: granular rice husk (RHg) and powdered RH (RHp). The clay mainly consists of clay (40%), silt (22%), and sand (38.4%), with a small proportion of gravel (0.24%). Its liquidity limit is 40% and the plasticity index is 26.5%. The mixtures were designed using earth and each of the two rice husks at the volumetric content of 10%, 15% and 20% of the total volume mixed with water 36.5%, 38.5% and 40.3% and fermented for three weeks. Each fermented mixture was added to the soil to form the paste, and 40 × 40 × 160 mm<sup>3</sup> test speciments were made for characterization. The results generally show an improvement in the physico-mechanical properties and water resistance of the mortars containing fermented RH, with an optimal content between 10% and 15%. The powdered RH improved the performance of the mortar better than granular RH.
基金financial support from the National Key R&D Program of China(2018YFD0400500)the Key Research and Development Program of Jiangsu Province(BE2018323)Qing Lan Project of Jiangsu Province and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘In the present study,the effects of cooked rice(CR)with added fructo-oligosaccharide(FOS)on faecal flora were studied by a simulated in vitro digestion and fermentation method.The total carbohydrate content,p H,and s hort-chain fatty acids(SCFAs)were determined during in vitro digestion and fermentation.The change in the bacterial phase distribution after the fermentation was also analysed.The results showed that t he total carbohydrate content of the CR with added FOS(FCR)significantly decreased during the simulated digestion.Meanwhile,the p H of the FCR decreased and the SCFAs concentration increased significantly compared to those of the CR during the simulated fermentation.In addition,the FCR showed the advantage of promoting beneficial bacteria,such as Bifidobacterium and Lactobacillus,and inhibiting harmful bacteria,such as Bacteroides and Klebsiella compared to the CR.Therefore,the FOS as a prebiotic could be recommended to produce the high-quality healthy rice food.
基金co-financed by National Natural Science Foundation of China(U1903108,31871771 and 31571818)Natural Science Foundation of Jiangsu Province(BK20201320)+2 种基金Jiangsu Agriculture Science and Technology Innovation Fund(CX(20)3043)Postgraduate Research&Practice innovation Program of Jiangsu Province(KYCX19_0589)Qing Lan Project of Jiangsu Province and Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘In this study,the in vitro digestion and fermentation of two intra-polysaccharide fractions(IPS1 and IPS2)from Paecilomyces cicadae TJJ1213 were investigated.The constituent monosaccharides of IPS1 and IPS2 were not changed after simulated saliva,gastric and small intestinal digestion.However,they can be hydrolyzed and utilized by gut microbiota,and short-chain fatty acids(SCFAs)level were increased after IPS1 and IPS2 treatments.Furthermore,16 S r RNA sequencing analysis of fermentation samples were performed.Alpha-diversity,beta-diversity and taxonomic composition differences analysis revealed that IPS1 and IPS2 promoted the proliferation of beneficial bacteria and modulated the overall structure of gut microbiota.Taxonomic comparison analysis found that IPS1 increased the relative abundances of beneficial bacteria including Megamonas,Bifidobacterium and Lactobacillus,while IPS2 could increase the abundance of Bacteroides,Parabacteroides and Phascolarctobacterium.In addition,they can also decrease the levels of pathogenic bacteria containing Escherichia-Shigella,Klebsiella and Fusobacterium.These results indicated that IPS from Paecilomyces cicadae TJJ1213 could be used as potential candidates for new functional foods.
基金funded by National Natural Science Foundation of China(project no.31901390)China Postdoctoral Science Foundation(project no.2022M711451)Natural Science Foundation of Gansu Province,China(22JR5RA527)。
文摘Background Ferulic acid esterase(FAE)-secreting Lactiplantibacillus plantarum A1(Lp A1)is a promising silage inoculant due to the FAE’s ability to alter the plant cell wall structure during ensiling,an action that is expected to improve forage digestibility.However,little is known regarding the impacts of Lp A1 on rumen microbiota.Our research assessed the influences of Lp A1 in comparison to a widely adopted commercial inoculant Lp MTD/1 on alfalfa’s ensilage,in vitro rumen incubation and microbiota.Results Samples of fresh and ensiled alfalfa treated with(either Lp A1 or Lp MTD/1)or without additives(as control;CON)and ensiled for 30,60 and 90 d were used for fermentation quality,in vitro digestibility and batch culture study.Inoculants treated silage had lower(P<0.001)pH,acetic acid concentration and dry matter(DM)loss,but higher(P=0.001)lactic acid concentration than the CON during ensiling.Compared to the CON and Lp MTD/1,silage treated with Lp A1 had lower(P<0.001)aNDF,ADF,ADL,hemicellulose,and cellulose contents and higher(P<0.001)free ferulic acid concentration.Compared silage treated with Lp MTD/1,silage treated with Lp A1 had significantly(P<0.01)improved ruminal gas production and digestibility,which were equivalent to those of fresh alfalfa.Realtime PCR analysis indicated that Lp A1 inoculation improved the relative abundances of rumen’s total bacteria,fungi,Ruminococcus albus and Ruminococcus flavefaciens,while the relative abundance of methanogens was reduced by Lp MTD/1 compared with CON.Principal component analysis of rumen bacterial 16S rRNA gene amplicons showed a clear distinction between CON and inoculated treatments without noticeable distinction between Lp A1 and Lp MTD/1 treatments.Comparison analysis revealed differences in the relative abundance of some bacteria in different taxa between Lp A1 and Lp MTD/1 treatments.Silage treated with Lp A1 exhibited improved rumen fermentation characteristics due to the inoculant effects on the rumen microbial populations and bacterial community.Conclusions Our findings suggest that silage inoculation of the FAE-producing Lp A1 could be effective in improving silage quality and digestibility,and modulating the rumen fermentation to improve feed utilization.
基金financialy supported by Directorate of Research and Community Service, Deputy for Strengthening Research and Development, Ministry of Research and Technology/National Research and Innovation Agency of Indonesia (8/E1/ KPT/2021) with research agreement contract (225-29/UN7.6.1/ PP/2021)。
文摘The presence of impurities in the bioethanol fermentation broth should be removed to mitigate any possible ineffective refining processes as well as to enhance bioethanol production. In this study, a prefiltration process was carried out for separating fermentation yeast cells and residual substrates using a microfiltration membrane. Hydrophilic polyvinylidene fluoride-graphene oxide/titanium dioxide(PVDF-GO/TiO_(2)) membrane with polyvinyl alcohol(PVA) surface-coating modification was fabricated and characterized. Membrane modification attempts have succeeded in increasing the hydrophilicity as indicated by contact angle decline from 72.10° to 34.83° and affinity towards water leading to higher water permeability. The performance evaluation showed that 90.77% of unwanted by-products(yeast cells and residual substrate) can be removed. This high rejection is also followed by a high and stable flux performance at 40.20 L·m^(-2)·h^(-1) where the flux was increased by 13 times compared to that of the neat membrane. The PVA-coated PVDF-GO/TiO2showed the best anti-biofouling performance with a flux recovery ratio after 5 days incubation(FRR5d) of 93.55%. This membrane material has excellent prospects in future membrane development for either in-situ application or as a pre-filtration in the fermentation process to separate living cells and residual substrates before being further processed in the refining processes.
文摘The aim of this study was to design a new emulsion liquid membrane(ELM)system for the separation of succinic acid from aqueous solutions.The concentration of succinic acid varied from 20 to 60 mmol·L^(-1).The prepared ELM system includes tributylamine(TBA)as a carrier,commercial kerosene as a solvent,Span 80 as a surfactant,and Na2CO3as a stripping agent.In order to control the membrane swelling,different values of cyclohexanone were added to the membrane phase.The effect of various empirical variables on the extraction of the succinic acid such as acid concentration in the feed solution,initial feed concentration,carrier concentration,the stirring speed of the extraction,Na2CO3,surfactant,and cyclohexanone concentrations,and treat ratio in the ELM system.The best result was obtained when TBA was used as the carrier.The final acid extraction efficiency was independent of pH variations of the aqueous feed solution.The extraction of succinic acid solution with a concentration of 40 mmol·L^(-1)was improved by increasing the treat ratio 1:7-1:3,stripping phase concentration 0.5-1.5 mol·L^(-1),stirring speed 300-500 r·min^(-1)and cyclohexanone concentration in the membrane phase 1.2-1.6 mol·L^(-1).No considerable effect on the extraction rate was observed for the carrier concentration in the membrane phase.But,the surfactant concentration in the feed phase showed a dual effect on the extraction efficiency.
基金supported by the National Key Research and Development Program of China(2019YFC1605000)National Natural Science Foundation of China(31872904)。
文摘Wheat flour,as the most important source of food globally,is one of the most common causative agents of food allergy.This study aimed to investigate the effects of fermentation on wheat protein digestibility and allergenicity.Protein digestibility were evaluated using the sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and enzyme-linked immunosorbent assay.The effect of protein on intestinal permeability was investigated by Caco-2 cell monolayers.Co-culture fermentation with Pediococcus acidilactici XZ31 and yeast leads to improvement in digestibility of wheat protein compared to single strain fermentation.Fermentation leads to a decrease in albumin/globulin antigenicity and an increase in gluten R5 reactivity,with the most significant changes in the co-culture group.Digestion strengthen the decrease of protein antigenicity and counteracts the difference in antigenicity induced by fermentation between groups.However,pretreatment with P.acidilactici XZ31 reduces the amount of allergens across Caco-2 monolayer and attenuates the gluten-induced increase in permeability of Caco-2 cell monolayer by reducing actin polymerization and villous atrophy.Co-culture fermentation reduces gluten-induced cell monolayer damage to a greater extent than P.acidilactici XZ31 monoculture.These results gives valuable insight into the effects of P.acidilactici XZ31 fermentation on the allergenicity and toxicity of wheat proteins,which contribute to promoting the application of multi-strain leavening agent in hypoallergenic and gluten-free wheat products.
基金supported by the Key R&D Project of Hebei Province of China (21322907D and 21322910D)the Natural Science Foundation of Hebei Province, China (C2022204174)the China Agriculture Research System (CARS-38 and CARS-39-23)。
文摘This study investigated the effects of dioscorea opposite waste(DOW) on the growth performance, blood parameters, rumen fermentation and rumen microbiota of weaned lambs. Sixty healthy weaned Small-Tailed Han lambs(male,(22.68±2.56) kg initially) were used as the experimental animals. Four levels of concentrate: 0(control, CON), 10%(DOW1), 15%(DOW2) and 20%(DOW3), were replaced with DOW in the basal diet as experimental treatments. The results showed that lambs fed the DOW2 diet had a higher(P<0.05) dry matter intake(DMI) than the other groups. There was no significant difference(P>0.05) among DOW groups in average daily weight gain(ADG), and replacing concentrate with DOW linearly or quadratically increased(P<0.05) the ADG, while lambs fed the DOW2 diet showed greater(P<0.05) ADG than the CON group. The relative plasma concentration of growth hormone(GH), insulin like growth factor-1(IGF-1) and insulin were affected by DOW, replacing concentrate with DOW linearly or quadratically(P<0.05) enhanced the plasma concentration of GH, IGF-1 and insulin, which was significantly higher(P<0.05) in the DOW2 group than in the CON, DOW1 and DOW3 groups. In addition, the DOW treatment showed a lower(P<0.05) concentration of blood urea nitrogen(BUN) than the CON group. Replacing concentrate with DOW quadratically decreased(P<0.05) the ruminal ammonia nitrogen(NH3-N) and increased(P<0.05) the total of volatile fatty acids(TVFAs) at 0 and 4 h after feeding as well as linearly decreased(P<0.05) the NH3-N at 8 h after feeding. Replacing concentrate with DOW linearly decreased(P<0.05) the propionate and increased the aceate before feeding, and linearly decreased(P<0.05) propionate and quadratically increased(P<0.05) the aceate at 4 and 8 h after feeding. Lambs fed the DOW2 diet increased the phylum Firmicutes and genera Succiniclasticum and Ruminococcus_1 groups, whereas decreased(P<0.05) the relative abundance of phylum Deferribacteres and genera intestinimonas and Ruminiclostridium. In summary, replacing the concentrate with 15% DOW was beneficial for improving the rumen fermentation and ADG by increasing the DMI and modulating the rumen microbial community.
文摘This paper first introduced the silage fermentation technology,including the selection of strains and activation expansion technology,the screening of high-quality fermentation raw materials,and the comparative experiment of fermentation process.It discussed feeding methods for sows and growing-finishing pigs at different breeding stages.In addition,it analyzed the effects of fermented silage on the growth performance of local pigs at various stages.Finally,it is concluded that silage fermentation can improve the water retention performance of pork,improve the quality of pork from local pigs,increase economic benefits,and achieve the purpose of saving costs and increasing efficiency.