Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the im...Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method.展开更多
In recent years,tidal flat development project in coastal cities in China continuously advancing practice proved that tidal flat development project is the coastal cities of effective measures to resolve the land fact...In recent years,tidal flat development project in coastal cities in China continuously advancing practice proved that tidal flat development project is the coastal cities of effective measures to resolve the land factors of economic development limitation,but at the same time the impact of the environment and the using of tidal flat development become the focus of attention.Analysis the coastal shoreline development and economic utilization,social benefits and the impact on the ecological environment combined with Qingdao joy of coastal project is under construction and proposed management measures to provide a theoretical basis for the tidal flat development and management has a very important significance.展开更多
We summarize our results about the quantization of a charged particle motion without spin inside a flat box under a static electromagnetic field with Landau’s gauge for the magnetic field, where Fourier’s transforma...We summarize our results about the quantization of a charged particle motion without spin inside a flat box under a static electromagnetic field with Landau’s gauge for the magnetic field, where Fourier’s transformation was used to analyze the problem, to point out that there exists a wave function which is different to that one given by Landau with the same Landau’s levels. The quantization of the magnetic flux is deduced differently to previous one, and a new solution is presented for the case of symmetric gauge of the magnetic field, and having the same Landau’s levels.展开更多
We study the quantization of a charged particle motion without spin inside a flat box under a static electromagnetic field. Contrary to Landau’s solution with constant magnetic field transverse to the box and using F...We study the quantization of a charged particle motion without spin inside a flat box under a static electromagnetic field. Contrary to Landau’s solution with constant magnetic field transverse to the box and using Fourier transformation, we found a full solution for the wave function which is different from that one given by Landau, and this fact remains when static electric field is added. However, the Landau’s levels appear in all cases.展开更多
基金supported by National Natural Science Foundation of China(Grant No. 50675186)Hebei Provincial Major Natural Science Foundation of China (Grant No. E2006001038)
文摘Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method.
文摘In recent years,tidal flat development project in coastal cities in China continuously advancing practice proved that tidal flat development project is the coastal cities of effective measures to resolve the land factors of economic development limitation,but at the same time the impact of the environment and the using of tidal flat development become the focus of attention.Analysis the coastal shoreline development and economic utilization,social benefits and the impact on the ecological environment combined with Qingdao joy of coastal project is under construction and proposed management measures to provide a theoretical basis for the tidal flat development and management has a very important significance.
文摘We summarize our results about the quantization of a charged particle motion without spin inside a flat box under a static electromagnetic field with Landau’s gauge for the magnetic field, where Fourier’s transformation was used to analyze the problem, to point out that there exists a wave function which is different to that one given by Landau with the same Landau’s levels. The quantization of the magnetic flux is deduced differently to previous one, and a new solution is presented for the case of symmetric gauge of the magnetic field, and having the same Landau’s levels.
文摘We study the quantization of a charged particle motion without spin inside a flat box under a static electromagnetic field. Contrary to Landau’s solution with constant magnetic field transverse to the box and using Fourier transformation, we found a full solution for the wave function which is different from that one given by Landau, and this fact remains when static electric field is added. However, the Landau’s levels appear in all cases.