期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Visual Study on Flow and Operational Characteristics of Flat Plate Closed Loop Pulsating Heat Pipes 被引量:2
1
作者 杨洪海 Groll Manfred Khandekar Sameer 《Journal of Donghua University(English Edition)》 EI CAS 2009年第1期80-84,共5页
This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined d... This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined directly on an aluminum plate(180 mm×120 mm×3 mm) covered by a transparent plate.The working fluid employed is ethanol.As a result,various flow patterns and their transitions are observed and found to be related to the fluid fill ratio,input heat load and the device orientation.Also the operational characteristics and working mechanism are discussed. 展开更多
关键词 flat plate closed loop pulsating heat pipes fill ratio flow patterns operational characteristics
下载PDF
Parametric Influence on Thermal Performance of Flat Plate Closed Loop Pulsating Heat Pipes 被引量:2
2
作者 杨洪海 KHANDEKAR Sameer GROLL Manfred 《Journal of Donghua University(English Edition)》 EI CAS 2006年第3期8-13,共6页
This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm^2, 165 mm long) machined directly on an aluminum... This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section (2 × 2 mm^2, 165 mm long) machined directly on an aluminum plate(180×120×3 nm^2), which was covered by a transparent plate. The working fluid employed was ethanol. As the results, the influence parameters of thermal performance were investigated, such as filling ratio, heat load and operational orientations etc. Filling ratio was found to be a critical parameter, and its effect was rather complicated. According to its values the PHP plate could have four distinct working zones with different operational characteristics and heat transfer performance. The effect of heat load on thermal performance was found to be positive, and in general, iucrcasing the heat load would improve heat transfer performance. In order to analyze the effect of gravity on thermal performance, three different heat modes and total seven tilt angles were tested and compared. Successful operation at all orientations with respect to gravity was also achieved. 展开更多
关键词 flat plate closed loop pulsating heat pipes parametric influences heat transfer characteristics.
下载PDF
Thermal analysis of an innovative flat heat pipe radiator 被引量:1
3
作者 寇志海 白敏丽 杨洪武 《Journal of Central South University》 SCIE EI CAS 2011年第2期568-572,共5页
An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. Th... An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. The thermal analysis of the flat heat pipe radiator for cooling high-power light emitting diode (LED) array was conducted. The thermal characteristics of the flat heat pipe radiator under the different heat loads and incline angles were investigated experimentally in natural convection. An electro-thermal conversion method was used to measure the junction temperature of the LED chips. It is found that the integral temperature distribution of the flat heat pipe radiator is reasonable and uniform. The total thermal resistance of the flat heat pipe radiator varies in the range of 0.38-0.45 K/W. The junction temperatures of LED chips with the flat heat pipe radiator and with the aluminum board at the same forward current of 0.35 A are 52.5 and 75.2 ℃, respectively. 展开更多
关键词 energy technology thermal analysis flat heat pipe radiator thermal characteristics
下载PDF
Visualisation and Heat Transfer Performance of Mini-Channel Flat Heat Pipe with a Binary Mixture
4
作者 FAN Gaoting TANG Aikun +3 位作者 CAI Tao SHAN Chunxian PAN Jun JIN Yi 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第5期1712-1725,共14页
To unravel the intricacies of two-phase gas-liquid flow characteristics and heat transfer behavior,an array mini-channel gravity plate heat pipe(AMGPHP)is proposed in this work,which allows for observing the internal ... To unravel the intricacies of two-phase gas-liquid flow characteristics and heat transfer behavior,an array mini-channel gravity plate heat pipe(AMGPHP)is proposed in this work,which allows for observing the internal changes in the state of the working fluids.The flow patterns such as pool flow,columnar flow,and slug flow,are experimentally explored and analyzed in detail.It is found that the optimal volume fill ratio is 20%by utilizing start-up time and thermal resistance as performance evaluation metrics.With this fill ratio,a medium optimization strategy by blending ethanol within R141b is proposed and evaluated.In comparison to pure working fluids,the heat transfer performance of AMGFHP in the binary fluid has been significantly augmented due to temperature and concentration shifts resulting from disparate boiling points.Under the 10%volume fraction ethanol blending condition,the equivalent thermal conductivity of the heat pipe is dramatically elevated,with a value of 3110 W/(m·℃),along with the reduction of the minimum start-up power to 4 W.In general,applying such a medium to heat pipes has considerable potential in practical applications. 展开更多
关键词 flat heat pipe MINI-CHANNEL visualisation two-phase flow binary mixtures thermal performance
原文传递
Numerical Simulation of Heat Transfer Performance for Ultra-Thin Flat Heat Pipe
5
作者 YAN Wentao YANG Xin +1 位作者 LIU Tengqing WANG Shuangfeng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第2期643-649,共7页
The heat transfer performance of ultra-thin flat heat pipes with#180 copper mesh wick was studied by numerical simulation for different heating powers.The length,width and height of the ultra-thin flat heat pipe are 8... The heat transfer performance of ultra-thin flat heat pipes with#180 copper mesh wick was studied by numerical simulation for different heating powers.The length,width and height of the ultra-thin flat heat pipe are 80 mm,8.5 mm and 1 mm,respectively.The temperature distribution and flow characteristics of ultra-thin flat heat pipes were simulated by coupling porous media model and user-defined function(UDF)in FLUENT.To validate the accuracy of the numerical model,the simulation results of the ultra-thin flat heat pipe are compared with the experimental data in predicting the evaporation section temperature.The numerical model has good accuracy for the one-dimensional heat transfer method of ultra-thin flat heat pipes.The velocity,pressure drop of the wick and total temperature difference have the same variation trend.With the increase of heating power,the temperature difference of ultra-thin flat heat pipes increases,and the pressure drop and the liquid velocity in the wick also increase. 展开更多
关键词 ultra-thin flat heat pipes evaporation section temperature temperature difference copper mesh SIMULATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部