The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and res...The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS.The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations.However,the computation time of Monte Carlo(MC)simulation is independent of the size of the patterned arrays in FPXS.This study proposes two high-efficiency MC projection simulators for FPXS:a graphics processing unit(GPU)-based phase-space sampling MC(gPSMC)simulator and GPU-based fluence sampling MC(gFSMC)simulator.The two simulators comprise three components:imaging-system modeling,photon initialization,and physical-interaction simulations in the phantom.Imaging-system modeling was performed by modeling the FPXS,imaging geometry,and detector.The gPSMC simulator samples the initial photons from the phase space,whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map.The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels,and projections based on the two simulators were calculated.The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections,and the efficiencies were evaluated by comparing the computation time.The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms.展开更多
In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often distur...In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images展开更多
Objective:To evaluate incidence of interscalar excursions between round window (RW) and cochleostomy approaches for cochlear implant (CI) insertion. Methods:This was a retrospective case-comparison. Flat-panel CT (FPC...Objective:To evaluate incidence of interscalar excursions between round window (RW) and cochleostomy approaches for cochlear implant (CI) insertion. Methods:This was a retrospective case-comparison. Flat-panel CT (FPCT) scans for 8 CI users with Med-El standard length electrode arrays were collected. Surgical technique was identified by a combination of operative notes and FPCT imaging. Four cochleae underwent round win-dow insertion and 4 cochleae underwent cochleostomy approaches anterior and inferior to the round window. Results:In our pilot study, cochleostomy approaches were associated with a higher likeli-hood of interscalar excursion. Within the cochleostomy group, we found 29% of electrode contacts (14 of 48 electrodes) to be outside the scala tympani. On the other hand, 8.5%of the electrode contacts (4 of 47 electrodes) in the round window insertion group were extra-scalar to the scala tympani. These displacements occurred at a mean angle of occur-rence of 364? ? 133?, near the apex of the cochlea. Round window electrode displacements tend to localize at angle of occurrences of 400? or greater. Cochleostomy electrodes occurred at an angle of occurrence of 19?e490?.展开更多
文摘The advantages of a flat-panel X-ray source(FPXS)make it a promising candidate for imaging applications.Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS.The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations.However,the computation time of Monte Carlo(MC)simulation is independent of the size of the patterned arrays in FPXS.This study proposes two high-efficiency MC projection simulators for FPXS:a graphics processing unit(GPU)-based phase-space sampling MC(gPSMC)simulator and GPU-based fluence sampling MC(gFSMC)simulator.The two simulators comprise three components:imaging-system modeling,photon initialization,and physical-interaction simulations in the phantom.Imaging-system modeling was performed by modeling the FPXS,imaging geometry,and detector.The gPSMC simulator samples the initial photons from the phase space,whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map.The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels,and projections based on the two simulators were calculated.The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections,and the efficiencies were evaluated by comparing the computation time.The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms.
基金Supported by the National Basic Research Program of China ("973"Program)(2006CB601201)~~
文摘In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images
文摘Objective:To evaluate incidence of interscalar excursions between round window (RW) and cochleostomy approaches for cochlear implant (CI) insertion. Methods:This was a retrospective case-comparison. Flat-panel CT (FPCT) scans for 8 CI users with Med-El standard length electrode arrays were collected. Surgical technique was identified by a combination of operative notes and FPCT imaging. Four cochleae underwent round win-dow insertion and 4 cochleae underwent cochleostomy approaches anterior and inferior to the round window. Results:In our pilot study, cochleostomy approaches were associated with a higher likeli-hood of interscalar excursion. Within the cochleostomy group, we found 29% of electrode contacts (14 of 48 electrodes) to be outside the scala tympani. On the other hand, 8.5%of the electrode contacts (4 of 47 electrodes) in the round window insertion group were extra-scalar to the scala tympani. These displacements occurred at a mean angle of occur-rence of 364? ? 133?, near the apex of the cochlea. Round window electrode displacements tend to localize at angle of occurrences of 400? or greater. Cochleostomy electrodes occurred at an angle of occurrence of 19?e490?.