This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU))....This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU)).The results showed FG triggered the formation of loosely attached complex with PP via physical modification under gentle magnetic stirring at pH 7.0,while ultrasound played an important role in reducing protein size,increasing surface hydrophobicity and molecular fluidity onto oil-water interface.So ultrasound further enhanced the interaction of PP with FG,and produced the PPFGU complex with smaller droplet size,higherζ-potential and lower turbidity.Further,combination of FG and ultrasound improved the physical properties of PP with higher viscosity,stiffer gels(defined as higher elastic modulus),stronger hydrophobic properties,better thermal stability,and fast protein absorption rate.Therefore,the PPFGU coarse emulsion performed highest emulsifying activity index(EAI)and emulsion stability index(ESI)that the stabilized nanoemulsion obtained smallest droplet size,higherζ-potential,and longest storage stability.The combination of FG and ultrasonic treatment will be an effective approach to improving the emulsifying property and thermal stability of PP,which can be considered as a potential plant-based emulsifier applied in the food industry.展开更多
In the present study, films and coatings for food applications based on a gum exudate from Brea tree (Cercidium praecox) were formulated and the influence of plasticizer content on their functional properties was ev...In the present study, films and coatings for food applications based on a gum exudate from Brea tree (Cercidium praecox) were formulated and the influence of plasticizer content on their functional properties was evaluated. Brea gum is a renewable resource available in semi-desert areas, extracted by native people. Films were produced by casting method and characterized through water vapour permeability, mechanical (tensile strength and elongation at break), morphological and optical properties. Glycerol was used as plasticizer. Brea gum films presented good visual aspect, transparency and amber colour. Microscopic observation showed a dense and homogeneous structure. Film wettability increased with glycerol content due to hydrophilic nature of the plasticizer. Solubility of films in water increased with temperature. Water sorption isotherms of films at 25 ~C showed that at high aw (above 0.50), the film matrix swells altering its structure and properties. Water vapour permeability remained practically constant up to 20% of glycerol content and then increases linearly with the plasticizer. The addition of glycerol decreased the opacity and tensile strength. The best film properties were obtained at 20% of glycerol concentration.展开更多
基金financially supported by grants from the Key Scientific Research Projects of Hubei Province(2020BCA086)the National Key Research and Development Program of China(2017YFD0400200)+3 种基金Wuhan Application Fundamental Frontier Project of China(2020020601012270)the National Natural Science Foundation of China(31771938)the China Agriculture Research System of MOF and MARAthe Wuhan Achievement Transformation Project(2019030703011505)。
文摘This study characterized and compared the physical and emulsifying properties of pea protein(PP)and its modified proteins(ultrasound treated-PP(PPU),flaxseed gum(FG)treated PP(PPFG)and ultrasound treated-PPFG(PPFGU)).The results showed FG triggered the formation of loosely attached complex with PP via physical modification under gentle magnetic stirring at pH 7.0,while ultrasound played an important role in reducing protein size,increasing surface hydrophobicity and molecular fluidity onto oil-water interface.So ultrasound further enhanced the interaction of PP with FG,and produced the PPFGU complex with smaller droplet size,higherζ-potential and lower turbidity.Further,combination of FG and ultrasound improved the physical properties of PP with higher viscosity,stiffer gels(defined as higher elastic modulus),stronger hydrophobic properties,better thermal stability,and fast protein absorption rate.Therefore,the PPFGU coarse emulsion performed highest emulsifying activity index(EAI)and emulsion stability index(ESI)that the stabilized nanoemulsion obtained smallest droplet size,higherζ-potential,and longest storage stability.The combination of FG and ultrasonic treatment will be an effective approach to improving the emulsifying property and thermal stability of PP,which can be considered as a potential plant-based emulsifier applied in the food industry.
文摘In the present study, films and coatings for food applications based on a gum exudate from Brea tree (Cercidium praecox) were formulated and the influence of plasticizer content on their functional properties was evaluated. Brea gum is a renewable resource available in semi-desert areas, extracted by native people. Films were produced by casting method and characterized through water vapour permeability, mechanical (tensile strength and elongation at break), morphological and optical properties. Glycerol was used as plasticizer. Brea gum films presented good visual aspect, transparency and amber colour. Microscopic observation showed a dense and homogeneous structure. Film wettability increased with glycerol content due to hydrophilic nature of the plasticizer. Solubility of films in water increased with temperature. Water sorption isotherms of films at 25 ~C showed that at high aw (above 0.50), the film matrix swells altering its structure and properties. Water vapour permeability remained practically constant up to 20% of glycerol content and then increases linearly with the plasticizer. The addition of glycerol decreased the opacity and tensile strength. The best film properties were obtained at 20% of glycerol concentration.
基金国家自然科学基金(21878026)工信部环保安全技术服务平台项目(2020-0107-3-1)+3 种基金2021年江苏省科技副总项目(FZ20211438)2021年江苏省研究生工作站项目(2021-187)常州市重点研发计划(CE20205051)Natural Science Foundation of Jiangsu Education Departement(1020220949)。