In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At f...In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At first,the pre-impact dynamic equations of open chain dual-arm space robot are established by Lagrangian approach,and the dynamic equations of a spacecraft are obtained by Newton-Euler method.Based on the results,with the process of integral and simplify,the response of the dual-arm space robot impacted by the spacecraft is analyzed by momentum conservation law and force transfer law.The closed chain system is formed in the post-impact phase.Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics.With the closed chain constraint equations,the composite system dynamic equations are derived.Secondly,the recurrent fuzzy neural network control scheme is designed for calm motion of unstable closed chain system with uncertain system parameter.In order to overcome the effects of uncertain system inertial parameters,the recurrent fuzzy neural network is used to approximate the unknown part,the control method with H∞tracking characteristic.According to the Lyapunov theory,the global stability is demonstrated.Meanwhile,the weighted minimum-norm theory is introduced to distribute torques guarantee that cooperative operation between manipulators.At last,numerical examples simulate the response of the collision,and the efficiency of the control scheme is verified by the simulation results.展开更多
Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversati...Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversation with the Lagrangian approach, the dynamic equation of a robot is established. Based on the above results, the free-floating dual-arm space robot system is modeled with RBF neural networks, the GL matrix and its product operator. With all uncertain inertial system parameters, an adaptive RBF neural network control scheme is developed for coordinated motion between the base attitude and the arm joints. The proposed scheme does not need linear parameterization of the dynamic equation of the system and any accurate prior-knowledge of the actual inertial parameters. Also it does not need to train the neural network offline so that it would present real-time and online applications. A planar free-floating dual-arm space robot is simulated to show feasibility of the proposed scheme.展开更多
The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. ...The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. Furthermore, according to the singular perturbation method, the system is separated into a slow subsystem representing rigid body motion of the robot and a fast subsystem representing the flexible link dynamics. For the slow subsystem, based on the second method of Lyapunov, using simple quantitative bounds on the model uncertainties, a robust tracking controller design is used during the trajectory tracking phase. The optimal control method is designed in the fast subsystem to guarantee the exponential stability. With the combination of the two above, the system can track the expected trajectory accurately, even though with uncertainty in model parameters, and its flexible vibration gets suppressed, too. Finally, some simulation tests have been conducted to verify the effectiveness of the proposed methods.展开更多
Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nut...Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.展开更多
The growing amount of space debris poses a threat to operational spacecraft and the long-term sustainability of activities in outer space. According to the orbital mechanics, an uncontrolled space object will be tumbl...The growing amount of space debris poses a threat to operational spacecraft and the long-term sustainability of activities in outer space. According to the orbital mechanics, an uncontrolled space object will be tumbling, bringing great challenge to capture and remove it. In this paper, a dual-arm coordinated ‘‘Area-Oriented Capture'(AOC) method is proposed to capture a non-cooperative tumbling target. Firstly, the motion equation of the tumbling target is established, based on which, the dynamic properties are analyzed. Then, the ‘‘Area-Oriented Capture'concept is presented to deal with the problem of large pose(position and attitude) deviation and tumbling motion. An area rather than fixed points/devices is taken as the object to be tracked and captured. As long as the manipulators’ end-effectors move to a specified range of the objective areas(not fixed points on the target, but areas), the target satellite will be hugged by the two arms.At last, the proposed method and the traditional method(i.e. fixed-point oriented capture method)are compared and analyzed through simulation. The results show that the proposed method has larger pose tolerance and takes shorter time for capturing a tumbling target.展开更多
The rotational motion of a tumbling target brings great challenges to space robot on successfully capturing the tumbling target.Therefore,it is necessary to reduce the target's rotation to a rate at which capture ...The rotational motion of a tumbling target brings great challenges to space robot on successfully capturing the tumbling target.Therefore,it is necessary to reduce the target's rotation to a rate at which capture can be accomplished by the space robot.In this paper,a detumbling strategy based on friction control of dual-arm space robot for capturing tumbling target is proposed.This strategy can reduce the target's rotational velocity while maintaining base attitude stability through the establishment of the rotation attenuation controller and base attitude adjustment controller.The rotation attenuation controller adopts the multi-space hybrid impedance control method to control the friction precisely.The base attitude adjustment controller applies the dual-arm extended Jacobian matrix to stabilize the base attitude.The main contributions of this paper are as follows:(1)The compliant control method is adopted to achieve a precise friction control,which can reduce the target angular velocity steadily;(2)The dual-arm extended Jacobian matrix is applied to stabilize the base attitude without affecting the target capture task;(3)The detumbling strategy of dualarm space robot is designed considering base attitude stabilization,realizing coordinated planning of the base attitude and the arms.The strategy is verified by a dual-arm space robot with two 7-DOF(degrees of freedom)arms.Simulation results show that,target with a rotation velocity of 20(°)/s can be effectively controlled to stop within 30 s,and the final deflection of the base attitude is less than 0.15°without affecting the target capture task,verifying the correctness and effectiveness of the strategy.Except to the tumbling target capture task,the control strategy can also be applied to other typical on-orbit operation tasks such as space debris removal and spacecraft maintenance.展开更多
基金supported by the National Natural Science Foundation of China(11372073,11072061)。
文摘In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At first,the pre-impact dynamic equations of open chain dual-arm space robot are established by Lagrangian approach,and the dynamic equations of a spacecraft are obtained by Newton-Euler method.Based on the results,with the process of integral and simplify,the response of the dual-arm space robot impacted by the spacecraft is analyzed by momentum conservation law and force transfer law.The closed chain system is formed in the post-impact phase.Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics.With the closed chain constraint equations,the composite system dynamic equations are derived.Secondly,the recurrent fuzzy neural network control scheme is designed for calm motion of unstable closed chain system with uncertain system parameter.In order to overcome the effects of uncertain system inertial parameters,the recurrent fuzzy neural network is used to approximate the unknown part,the control method with H∞tracking characteristic.According to the Lyapunov theory,the global stability is demonstrated.Meanwhile,the weighted minimum-norm theory is introduced to distribute torques guarantee that cooperative operation between manipulators.At last,numerical examples simulate the response of the collision,and the efficiency of the control scheme is verified by the simulation results.
基金the National Natural Science Foundation of China (Nos. 10672040 and10372022)the Natural Science Foundation of Fujian Province of China (No. E0410008)
文摘Control of coordinated motion between the base attitude and the arm joints of a free-floating dual-arm space robot with uncertain parameters is discussed. By combining the relation of system linear momentum conversation with the Lagrangian approach, the dynamic equation of a robot is established. Based on the above results, the free-floating dual-arm space robot system is modeled with RBF neural networks, the GL matrix and its product operator. With all uncertain inertial system parameters, an adaptive RBF neural network control scheme is developed for coordinated motion between the base attitude and the arm joints. The proposed scheme does not need linear parameterization of the dynamic equation of the system and any accurate prior-knowledge of the actual inertial parameters. Also it does not need to train the neural network offline so that it would present real-time and online applications. A planar free-floating dual-arm space robot is simulated to show feasibility of the proposed scheme.
基金This work was supported by the application foundation for basic research of Jiangsu(No.BJ98057)the innovation foundation for the scientific research of Nanjing University of Aeronautics and Astronautics(No.Y0487-031)
文摘The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. Furthermore, according to the singular perturbation method, the system is separated into a slow subsystem representing rigid body motion of the robot and a fast subsystem representing the flexible link dynamics. For the slow subsystem, based on the second method of Lyapunov, using simple quantitative bounds on the model uncertainties, a robust tracking controller design is used during the trajectory tracking phase. The optimal control method is designed in the fast subsystem to guarantee the exponential stability. With the combination of the two above, the system can track the expected trajectory accurately, even though with uncertainty in model parameters, and its flexible vibration gets suppressed, too. Finally, some simulation tests have been conducted to verify the effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China(11972077,11672035)。
文摘Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.
基金supported by the National Natural Science Foundation of China (No. U1613227)Guangdong Special Support Program (No. 2017TX04X0071)+1 种基金Self-Planned Task of State Key Labora-tory of Robotics and System (HIT) (No. SKLRS201817B)Shenzhen Key Lab Fund of Mechanisms and Control in Aerospace (No. ZDSYS201703031002066)
文摘The growing amount of space debris poses a threat to operational spacecraft and the long-term sustainability of activities in outer space. According to the orbital mechanics, an uncontrolled space object will be tumbling, bringing great challenge to capture and remove it. In this paper, a dual-arm coordinated ‘‘Area-Oriented Capture'(AOC) method is proposed to capture a non-cooperative tumbling target. Firstly, the motion equation of the tumbling target is established, based on which, the dynamic properties are analyzed. Then, the ‘‘Area-Oriented Capture'concept is presented to deal with the problem of large pose(position and attitude) deviation and tumbling motion. An area rather than fixed points/devices is taken as the object to be tracked and captured. As long as the manipulators’ end-effectors move to a specified range of the objective areas(not fixed points on the target, but areas), the target satellite will be hugged by the two arms.At last, the proposed method and the traditional method(i.e. fixed-point oriented capture method)are compared and analyzed through simulation. The results show that the proposed method has larger pose tolerance and takes shorter time for capturing a tumbling target.
基金co-supported by the National Natural Science Foundation of China(Nos.61403038 and 61573066)the Open Research Fund of Key Laboratory of Space Utilization,Chinese Academy of Sciences(Nos.LSU-2016-05-2 and LSUKJTS-2017-02)。
文摘The rotational motion of a tumbling target brings great challenges to space robot on successfully capturing the tumbling target.Therefore,it is necessary to reduce the target's rotation to a rate at which capture can be accomplished by the space robot.In this paper,a detumbling strategy based on friction control of dual-arm space robot for capturing tumbling target is proposed.This strategy can reduce the target's rotational velocity while maintaining base attitude stability through the establishment of the rotation attenuation controller and base attitude adjustment controller.The rotation attenuation controller adopts the multi-space hybrid impedance control method to control the friction precisely.The base attitude adjustment controller applies the dual-arm extended Jacobian matrix to stabilize the base attitude.The main contributions of this paper are as follows:(1)The compliant control method is adopted to achieve a precise friction control,which can reduce the target angular velocity steadily;(2)The dual-arm extended Jacobian matrix is applied to stabilize the base attitude without affecting the target capture task;(3)The detumbling strategy of dualarm space robot is designed considering base attitude stabilization,realizing coordinated planning of the base attitude and the arms.The strategy is verified by a dual-arm space robot with two 7-DOF(degrees of freedom)arms.Simulation results show that,target with a rotation velocity of 20(°)/s can be effectively controlled to stop within 30 s,and the final deflection of the base attitude is less than 0.15°without affecting the target capture task,verifying the correctness and effectiveness of the strategy.Except to the tumbling target capture task,the control strategy can also be applied to other typical on-orbit operation tasks such as space debris removal and spacecraft maintenance.