Although flexible manipulators own many potential advantages, one of their major disadvantages is the deterioration of the end-effector accuracy due to the flexibility. Therefore, how to reduce vibration is a signific...Although flexible manipulators own many potential advantages, one of their major disadvantages is the deterioration of the end-effector accuracy due to the flexibility. Therefore, how to reduce vibration is a significant problem. Inspired by the observation on the motion behaviors of animals, a new idea of decreasing motion deflection of the flexible manipulator is suggested. The concept of controllable local degrees of freedom is proposed and analyzed. By way of optimizing local motion provided by the controllable local degrees of freedom, the end-effector deflection of the flexible manipulator can be effectively decreased through dynamic coupling. The corresponding optimal method for vibration control of the flexible manipulator is put forward. The kinematic simulation is carried ant on a three-link flexible manipulator The corresponding results verify the feasibility of this method.展开更多
基金Important Project of Science and Technology Research of Ministry of Education of China (No. 307005)National Hi-tech Research and Development Program of China (863 Program, No.SQ2007AA04Z231266).
文摘Although flexible manipulators own many potential advantages, one of their major disadvantages is the deterioration of the end-effector accuracy due to the flexibility. Therefore, how to reduce vibration is a significant problem. Inspired by the observation on the motion behaviors of animals, a new idea of decreasing motion deflection of the flexible manipulator is suggested. The concept of controllable local degrees of freedom is proposed and analyzed. By way of optimizing local motion provided by the controllable local degrees of freedom, the end-effector deflection of the flexible manipulator can be effectively decreased through dynamic coupling. The corresponding optimal method for vibration control of the flexible manipulator is put forward. The kinematic simulation is carried ant on a three-link flexible manipulator The corresponding results verify the feasibility of this method.