The design of housing systems is today challenged by a highly uncertain context, dominated by the rapid development of functional and technological obsolescence in inherited housing models. If flexibility is the abili...The design of housing systems is today challenged by a highly uncertain context, dominated by the rapid development of functional and technological obsolescence in inherited housing models. If flexibility is the ability of a system to be easily modified and to respond to changes in the environment timely and conveniently, it can be considered as the antidote to obsolescence or the characteristic of the system that guarantees slippage over time. Our paper focuses on the concept of flexibility as a fundamental prerequisite for residential building in order to extend its life cycle design, through strategies and constructive solutions that ensure both the convertibility of the space in response to changing usage and the use of building materials that encourage the reversibility and the long-term easy maintenance of the technological choices that have been implemented. Flexibility is examined both from a conceptual point of view, so as to obtain a clear and logical definition that is distinct from related terms, as well as from a practical point of view, by finding ways to incorporate this requirement into the designing of housing.展开更多
In order to further improve the precision forming efficiency of a sand mold digital patternless casting and reduce the amount of sand mold cutting, a method for near-net forming of the sand mold with digital flexible ...In order to further improve the precision forming efficiency of a sand mold digital patternless casting and reduce the amount of sand mold cutting, a method for near-net forming of the sand mold with digital flexible extrusion technology was put forward. The theory, optimization algorithm and technology for sand mold nearnet forming were studied. Experimental results show that the sand mold forming efficiency can be increased by 34%, and the molding sand can be reduced by 44%. The method for near-net forming of a sand mold with digital flexible extrusion technology can effectively promote the application of digital patternless casting technology in the mass production of castings and thus greatly improves the efficiency and automation of sand mold manufacturing.展开更多
This study focuses on the evolution of growth model and cultivation of competitive advantages under the ambidextrous innovation strategy.After a brief introduction of the connotation of ambidextrous innovation strateg...This study focuses on the evolution of growth model and cultivation of competitive advantages under the ambidextrous innovation strategy.After a brief introduction of the connotation of ambidextrous innovation strategy,the evolution of growth model of high-tech enterprises under the conventional strategy and the ambidextrous innovation strategy is analyzed.Furthermore,a discussion is made on how to cultivate enterprises’competitive advantages under the ambidextrous innovation strategy,thereby enabling enterprises to stand out from competitors under this new strategic model and truly achieve the goal of sustainable development.展开更多
Because the UT (ultrasonic testing) flexible probe technology may be an appropriate answer to examine components with uneven surface, AREVA has developed an industrial application of the CEA's (French Atomic Energ...Because the UT (ultrasonic testing) flexible probe technology may be an appropriate answer to examine components with uneven surface, AREVA has developed an industrial application of the CEA's (French Atomic Energy and Alternative Energies) flexible phased arrays sensors. As a "first of a kind" project, the challenges faced were significant, including developing a phased array smart probe suitable for industrial use on rather simple but large scale geometries, permitting UT propagation within a constraining media structure and then targeting a qualification according to ENIQ (European Network for Inspection Qualification) methodology. A prototype flexible probe, designed for UT validation, and final flexible linear array probes permitting the UT behavior (as, e.g., detection and sizing from diffraction type echoes) to be maintained on wavy coupling surfaces, have been manufactured. These probes include a profilemeter with optical sensors control and a specifically designed coupling circuit (avoiding probe housing tightness issues). Qualification has been performed using open test blocks, (where known "defects" exist, for procedure qualification), and blind test blocks, (where "defects" are unknown, for qualification of testing personnel). One open test bloc was customized to represent a "real" surface condition, with gaps up to 2.5 mm under the regular rigid probes. AREVAI/BGSI in Germany was selected to lead the project, with assistance in development and manufacturing sub-contracted to "CEA/LIST" laboratory, and the companies "IMASONIC" and "M2M". This paper describes the development of these probes and explains a few features (ENIQ qualification objectives fulfilled, UT data acquired on actual perturbed surface) that made their industrial implementation successful.展开更多
文摘The design of housing systems is today challenged by a highly uncertain context, dominated by the rapid development of functional and technological obsolescence in inherited housing models. If flexibility is the ability of a system to be easily modified and to respond to changes in the environment timely and conveniently, it can be considered as the antidote to obsolescence or the characteristic of the system that guarantees slippage over time. Our paper focuses on the concept of flexibility as a fundamental prerequisite for residential building in order to extend its life cycle design, through strategies and constructive solutions that ensure both the convertibility of the space in response to changing usage and the use of building materials that encourage the reversibility and the long-term easy maintenance of the technological choices that have been implemented. Flexibility is examined both from a conceptual point of view, so as to obtain a clear and logical definition that is distinct from related terms, as well as from a practical point of view, by finding ways to incorporate this requirement into the designing of housing.
基金financially supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.51525503)
文摘In order to further improve the precision forming efficiency of a sand mold digital patternless casting and reduce the amount of sand mold cutting, a method for near-net forming of the sand mold with digital flexible extrusion technology was put forward. The theory, optimization algorithm and technology for sand mold nearnet forming were studied. Experimental results show that the sand mold forming efficiency can be increased by 34%, and the molding sand can be reduced by 44%. The method for near-net forming of a sand mold with digital flexible extrusion technology can effectively promote the application of digital patternless casting technology in the mass production of castings and thus greatly improves the efficiency and automation of sand mold manufacturing.
基金Project name:Evolution of Growth Model and Cultivation of Competitive Advantage under Ambidextrous Innovation Strategy-A case study of China’s high-tech enterprises Project no.:JKY106320,Project category:National key project of the“14th Five-Year Plan”of Education and Scientific Research of the Ministry of Education The organization of the project chair:University of Malaya。
文摘This study focuses on the evolution of growth model and cultivation of competitive advantages under the ambidextrous innovation strategy.After a brief introduction of the connotation of ambidextrous innovation strategy,the evolution of growth model of high-tech enterprises under the conventional strategy and the ambidextrous innovation strategy is analyzed.Furthermore,a discussion is made on how to cultivate enterprises’competitive advantages under the ambidextrous innovation strategy,thereby enabling enterprises to stand out from competitors under this new strategic model and truly achieve the goal of sustainable development.
文摘Because the UT (ultrasonic testing) flexible probe technology may be an appropriate answer to examine components with uneven surface, AREVA has developed an industrial application of the CEA's (French Atomic Energy and Alternative Energies) flexible phased arrays sensors. As a "first of a kind" project, the challenges faced were significant, including developing a phased array smart probe suitable for industrial use on rather simple but large scale geometries, permitting UT propagation within a constraining media structure and then targeting a qualification according to ENIQ (European Network for Inspection Qualification) methodology. A prototype flexible probe, designed for UT validation, and final flexible linear array probes permitting the UT behavior (as, e.g., detection and sizing from diffraction type echoes) to be maintained on wavy coupling surfaces, have been manufactured. These probes include a profilemeter with optical sensors control and a specifically designed coupling circuit (avoiding probe housing tightness issues). Qualification has been performed using open test blocks, (where known "defects" exist, for procedure qualification), and blind test blocks, (where "defects" are unknown, for qualification of testing personnel). One open test bloc was customized to represent a "real" surface condition, with gaps up to 2.5 mm under the regular rigid probes. AREVAI/BGSI in Germany was selected to lead the project, with assistance in development and manufacturing sub-contracted to "CEA/LIST" laboratory, and the companies "IMASONIC" and "M2M". This paper describes the development of these probes and explains a few features (ENIQ qualification objectives fulfilled, UT data acquired on actual perturbed surface) that made their industrial implementation successful.