Electrode material based on a novel core–shell structure consisting of NiCoS(NCS) solid fiber core and Mn S(MS) sheet shell(NCS@MS) in situ grown on carbon cloth(CC) has been successfully prepared by a simple...Electrode material based on a novel core–shell structure consisting of NiCoS(NCS) solid fiber core and Mn S(MS) sheet shell(NCS@MS) in situ grown on carbon cloth(CC) has been successfully prepared by a simple sulfurization-assisted hydrothermal method for high performance supercapacitor. The synthesized NiCoS@Mn S/CC electrode shows high capacitance of 1908.3 F gat a current density of 0.5 A gwhich is higher than those of NiCoSand Mn S at the same current density. A flexible all-solid-state asymmetric supercapacitor(ASC) is constructed by using NiCoS@Mn S/CC as positive electrode, active carbon/CC as negative electrode and KOH/poly(vinyl alcohol)(PVA) as electrolyte. The optimized ASC shows a maximum energy density of 23.3 Wh kgat 1 A g, a maximum power density of about7.5 kw kgat 10 A gand remarkable cycling stability. After 9000 cycles, the ASC still exhibited67.8% retention rate and largely unchanged charge/discharge curves. The excellent electrochemical properties are resulted from the novel core–shell structure of the NiCoS@Mn S/CC electrode, which possesses both high surface area for Faraday redox reaction and superior kinetics of charge transport. The NiCoS@Mn S/CC electrode shows a promising potential for energy storage applications in the future.展开更多
A novel all-solid-state, coaxial, fiber-shaped asymmetric supercapacitor has been fabricated by wrapping a conducting carbon paper on a MnO2-modified nanoporous gold wire. This energy wire exhibits high capacitance of...A novel all-solid-state, coaxial, fiber-shaped asymmetric supercapacitor has been fabricated by wrapping a conducting carbon paper on a MnO2-modified nanoporous gold wire. This energy wire exhibits high capacitance of 12 mF.cm^-2 and energy density of 5.4 μW.h.cm^-2 with excellent cycling stability. Hierarchical nanostructures and coaxial architectural design facilitate effective contacts between the two core@sheath electrodes and active layers with high flexibility and high performance. This work provides the first example of coaxial fiber- shaped asymmetric supercapacitors with an operation voltage of 1.8 V, and holds great potential for future flexible electronic devices.展开更多
All-so lid-state flexible supercapacitors have shown great potential in wearable and portable electronics.In this work, a flexible asymmetric pseudocapacitor(FAPC) is fabricated by using MnO_2 nanosheetscarbon fabric ...All-so lid-state flexible supercapacitors have shown great potential in wearable and portable electronics.In this work, a flexible asymmetric pseudocapacitor(FAPC) is fabricated by using MnO_2 nanosheetscarbon fabric as cathode and Fe_2O_3 nanowire-carbon fabric as anode in the presence of PVA-LiCl as gel electrolyte. With high area capacitances of MnO_2 and Fe_2O_3 based electrodes by optimizing the reaction conditions, the device shows high working potential of 1.8 V, high area capacitance of 83.3 mF/cm^2(119 F/g), stable cycling performance with 82.3% of capacitance retention after 5000 cycles, and a competitive energy density of 53.55 Wh/kg in the broader context of MnO_2-based supercapacitors. In addition, the FAPC demonstrates excellent mechanical stability and flexibility with negligible degradation of electrochemical performance after numerous bending tests, establishing it as a promising candidate for portable and wearable energy storage.展开更多
Transition metal phosphides(TMPs)are recognized as such promising supercapacitor materials for the practical application,due to their superior electrical conductivity and excellent redox activity.Here,self-supported t...Transition metal phosphides(TMPs)are recognized as such promising supercapacitor materials for the practical application,due to their superior electrical conductivity and excellent redox activity.Here,self-supported three-dimensional NiCoP nanoparticles embedded in NiCoO2 nano wires(NiCoO2/NiCoP)electrode consisting of nickel cobalt phosphides(NiCoP)with high activity and nickel cobalt oxides(NiCoO2)with good stability were fabricated by a hydrothermal and phosphorization method.The electrode integrates the advantages of nanowire arrays for fast ion transport and foam Ni for effective charge transport and flexibility.Benefitting the proper composition control of the nanohybrid and unique structure design,the optimized NiCoO2/NiCoP-20 exhibits a high specific capacitance of 3204 F·g-1 at 1 A·g-1 in 3 mol·L-1 KOH aqueous electrolyte in a three-electrode system.Moreover,the asymmetric supercapacitor assembled with the prepared NiCoO2/NiCoP-20 and activated carbon achieves a specific capacitance of 116 F·g-1 with a high energy density of 40.32 Wh·kg-1 at the power density of 800.18 W·kg-1.The practical application is further demonstrated with all-solid-state winding supercapacitor devices,with decent flexibility,in series to light the Central South University(CSU)logo consisting of 21 red LED indicators.展开更多
基金supported by the Grant-in-Aid for Scientific Research (KAKENHI) program, Japan (C, Grant Number 15K05597)Takahashi Industrial and Economic Research Foundation (Takahashi Grant Number 06-003-154)
文摘Electrode material based on a novel core–shell structure consisting of NiCoS(NCS) solid fiber core and Mn S(MS) sheet shell(NCS@MS) in situ grown on carbon cloth(CC) has been successfully prepared by a simple sulfurization-assisted hydrothermal method for high performance supercapacitor. The synthesized NiCoS@Mn S/CC electrode shows high capacitance of 1908.3 F gat a current density of 0.5 A gwhich is higher than those of NiCoSand Mn S at the same current density. A flexible all-solid-state asymmetric supercapacitor(ASC) is constructed by using NiCoS@Mn S/CC as positive electrode, active carbon/CC as negative electrode and KOH/poly(vinyl alcohol)(PVA) as electrolyte. The optimized ASC shows a maximum energy density of 23.3 Wh kgat 1 A g, a maximum power density of about7.5 kw kgat 10 A gand remarkable cycling stability. After 9000 cycles, the ASC still exhibited67.8% retention rate and largely unchanged charge/discharge curves. The excellent electrochemical properties are resulted from the novel core–shell structure of the NiCoS@Mn S/CC electrode, which possesses both high surface area for Faraday redox reaction and superior kinetics of charge transport. The NiCoS@Mn S/CC electrode shows a promising potential for energy storage applications in the future.
文摘A novel all-solid-state, coaxial, fiber-shaped asymmetric supercapacitor has been fabricated by wrapping a conducting carbon paper on a MnO2-modified nanoporous gold wire. This energy wire exhibits high capacitance of 12 mF.cm^-2 and energy density of 5.4 μW.h.cm^-2 with excellent cycling stability. Hierarchical nanostructures and coaxial architectural design facilitate effective contacts between the two core@sheath electrodes and active layers with high flexibility and high performance. This work provides the first example of coaxial fiber- shaped asymmetric supercapacitors with an operation voltage of 1.8 V, and holds great potential for future flexible electronic devices.
基金financially supported by the National Natural Science Foundation of China (Nos. 51579057 and 51379065)State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology(No. 2016DX07)+3 种基金the support of the Natural Science Foundation of Shandong Province (No. ZR2018MB018)the Natural Science Foundation of China (No. 21802080)the Thousand Youth Talents Program of Chinathe Doctoral Fund of the QUST
文摘All-so lid-state flexible supercapacitors have shown great potential in wearable and portable electronics.In this work, a flexible asymmetric pseudocapacitor(FAPC) is fabricated by using MnO_2 nanosheetscarbon fabric as cathode and Fe_2O_3 nanowire-carbon fabric as anode in the presence of PVA-LiCl as gel electrolyte. With high area capacitances of MnO_2 and Fe_2O_3 based electrodes by optimizing the reaction conditions, the device shows high working potential of 1.8 V, high area capacitance of 83.3 mF/cm^2(119 F/g), stable cycling performance with 82.3% of capacitance retention after 5000 cycles, and a competitive energy density of 53.55 Wh/kg in the broader context of MnO_2-based supercapacitors. In addition, the FAPC demonstrates excellent mechanical stability and flexibility with negligible degradation of electrochemical performance after numerous bending tests, establishing it as a promising candidate for portable and wearable energy storage.
基金financially supported by the National Key Research and Development Program of China(No.2018YFB0104200)。
文摘Transition metal phosphides(TMPs)are recognized as such promising supercapacitor materials for the practical application,due to their superior electrical conductivity and excellent redox activity.Here,self-supported three-dimensional NiCoP nanoparticles embedded in NiCoO2 nano wires(NiCoO2/NiCoP)electrode consisting of nickel cobalt phosphides(NiCoP)with high activity and nickel cobalt oxides(NiCoO2)with good stability were fabricated by a hydrothermal and phosphorization method.The electrode integrates the advantages of nanowire arrays for fast ion transport and foam Ni for effective charge transport and flexibility.Benefitting the proper composition control of the nanohybrid and unique structure design,the optimized NiCoO2/NiCoP-20 exhibits a high specific capacitance of 3204 F·g-1 at 1 A·g-1 in 3 mol·L-1 KOH aqueous electrolyte in a three-electrode system.Moreover,the asymmetric supercapacitor assembled with the prepared NiCoO2/NiCoP-20 and activated carbon achieves a specific capacitance of 116 F·g-1 with a high energy density of 40.32 Wh·kg-1 at the power density of 800.18 W·kg-1.The practical application is further demonstrated with all-solid-state winding supercapacitor devices,with decent flexibility,in series to light the Central South University(CSU)logo consisting of 21 red LED indicators.