期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analytical Higher-Order Model for Flexible and Stretchable Sensors
1
作者 ZHANG Yongfang ZHU Hongbin +3 位作者 LIU Cheng LIU Xu LIU Fuxi L Yanjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期379-386,共8页
The stretchable sensor wrapped around a foldable airfoil or embedded inside of it has great potential for use in the monitoring of the structural status of the foldable airfoil.The design methodology is important to t... The stretchable sensor wrapped around a foldable airfoil or embedded inside of it has great potential for use in the monitoring of the structural status of the foldable airfoil.The design methodology is important to the development of the stretchable sensor for status monitoring on the foldable airfoil.According to the requirement of mechanical flexibility of the sensor,the combined use of a layered flexible structural formation and a strain isolation layer is implemented.An analytical higher-order model is proposed to predict the stresses of the strain-isolation layer based on the shear-lag model for the safe design of the flexible and stretchable sensors.The normal stress and shear stress equations in the constructed structure of the sensors are obtained by the proposed model.The stress distribution in the structure is investigated when bending load is applied to the structures.The numerical results show that the proposed model can predict the variation of normal stress and shear stress along the thickness of the strain-isolation(polydimethylsiloxane)layer accurately.The results by the proposed model are in good agreement with the finite element method,in which the normal stress is variable while the shear stress is invariable along the thickness direction of strain-isolation layer.The high-order model is proposed to predict the stresses of the layered structure of the flexible and stretchable sensor for monitoring the status of the foldable airfoil. 展开更多
关键词 flexible and stretchable sensors higher-order shear-lag model normal stress shear stress
下载PDF
Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors 被引量:3
2
作者 Yibing Luo Jianye Li +3 位作者 Qiongling Ding Hao Wang Chuan Liu Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期103-147,共45页
Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to ... Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks,and for the early detection and treatment of diseases for home healthcare.Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable.Functionalized hydrogels are intrinsically conductive,self-healing,self-adhesive,biocompatible,and room-temperature sensitive.Compared with traditional rigid vapor sensors,hydrogel-based gas and humidity sensors can directly fit human skin or clothing,and are more suitable for real-time monitoring of personal health and safety.In this review,current studies on hydrogel-based vapor sensors are investigated.The required properties and optimization methods of wearable hydrogel-based sensors are introduced.Subsequently,existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized.Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented.Moreover,the potential of hydrogels in the field of vapor sensing is elucidated.Finally,the current research status,challenges,and future trends of hydrogel gas/humidity sensing are discussed. 展开更多
关键词 Health and safety monitoring Gas and humidity sensor Functionalized hydrogel Wearable sensor flexible and stretchable sensor
下载PDF
Engineering Smart Composite Hydrogels for Wearable Health Monitoring 被引量:1
3
作者 Jianye Li Qiongling Ding +6 位作者 Hao Wang Zixuan Wu Xuchun Gui Chunwei Li Ning Hu Kai Tao Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期233-277,共45页
Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome gene... Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely.During the health monitoring process,different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring. 展开更多
关键词 Wearable health monitoring Smart composite hydrogel Hydrogel engineering Wearable sensor flexible and stretchable sensors
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部