The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr...The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.展开更多
The computer numerical control(CNC) system is suited to control varied types of flexible fixtures in aircraft component manufacturing and assembly. The mechanisms and control requirements of flexible fixtures are pr...The computer numerical control(CNC) system is suited to control varied types of flexible fixtures in aircraft component manufacturing and assembly. The mechanisms and control requirements of flexible fixtures are presented and analyzed. The hardware and software architecture and implementation of CNC system are pro- posed. The flexible fixture mechanism is described using configuration parameters. According to the parameters, the CNC system automatically generates the control feature and the human machine interface (HMI) operation function. The CNC system is implemented in a flexible fixture for skin-strlnger assembly, and results show the effectiveness of the system.展开更多
There are many welding fixture layout design problems of flexible parts inbody-in-white assembly process, which directly cause body assemble variation. The fixture layoutdesign quality is mainly influenced by the posi...There are many welding fixture layout design problems of flexible parts inbody-in-white assembly process, which directly cause body assemble variation. The fixture layoutdesign quality is mainly influenced by the position and quantity of fixture locators and clamps. Ageneral analysis model of flexible assembles deformation caused by fixture is set up based on'N-2-l' locating principle, in which the locator and damper are treated as the same fixture layoutelements. An analysis model for the flexible part deformation in fixturing is set up in order toobtain the optimization object function and constraints accordingly. The final fixture elementlayout could be obtained through global optimal research by using improved genetic algorithm, whicheffectively decreases fixture elements layout influence on flexible assembles deformation.展开更多
In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich ass...In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich assembly mode which consists of the isomorphic module structure and the standard mechanical-electric-data-thermal interfaces.The advantages of the sandwich assembly mode include flexible reconfiguration and efficient assembly.The prototype of the sandwich assembly mode is built for verifying the performance and the feasibility of the proposed mechanical-electric-data-thermal interfaces.Finally,an assembly case is accomplished to demonstrate the validity and advantages of the proposed“Tetris”microsatellite platform.展开更多
To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,wh...To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots.展开更多
Today's production systems are demanded to exhibit an increased flexibility and mutability in order to deal with dynamically changing conditions, objectives and an increasing number of product variants within industr...Today's production systems are demanded to exhibit an increased flexibility and mutability in order to deal with dynamically changing conditions, objectives and an increasing number of product variants within industrial turbulent environments. Flexible automated systems are requested in order to improve dynamic production efficiency, e.g. robot-based hardware and PC-based controllers, but these usually induce a significantly higher production complexity, whereby the efforts for planning and programming, but also setups and reconfiguration, expand. In this paper a definition and some concepts of self-optimizing assembly systems are presented to describe possible ways to reduce the planning efforts in complex production systems. The concept of self-optimization in assembly systems will be derived from a theoretical approach and will be transferred to a specific application scenario---the automated assembly of a miniaturized solid state laser--where the challenges of unpredictable influences from e.g. component tolerances can be overcome by the help of self-optimization.展开更多
The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-objec...The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-object problem, such as the fuzzy cost, the fuzzy due-date, and the fuzzy makespan, etc, can be solved by FGFJSP. To optimize FGFJSP, an individual optimization and colony diversity genetic algorithm (IOCDGA) is presented to accelerate the convergence speed and to avoid the earliness. In IOCDGA, the colony average distance and the colony entropy are defined after the definition of the encoding model. The colony diversity is expressed by the colony average distance and the colony entropy. The crossover probability and the mutation probability are controlled by the colony diversity. The evolution emphasizes that sigle individual or a few individuals evolve into the best in IOCDGA, but not the all in classical GA. Computational results show that the algorithm is applicable and the number of iterations is less.展开更多
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
An integrated approach to generation of precedence relations and precedencegraphs for assembly sequence planning is presented, which contains more assembly flexibility. Theapproach involves two stages. Based on the as...An integrated approach to generation of precedence relations and precedencegraphs for assembly sequence planning is presented, which contains more assembly flexibility. Theapproach involves two stages. Based on the assembly model, the components in the assembly can bedivided into partially constrained components and completely con-strained components in the firststage, and then geometric precedence relation for every component is generated automatically.According to the result of the first stage, the second stage determines and constructs allprecedence graphs. The algorithms of these two stages proposed are verified by two assemblyexamples.展开更多
The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain inde...The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model.展开更多
The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly ...The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly affect product quality.In this paper,we review the methods of cable layout design,cable assembly process planning,and cable assembly simulation.We first review research on flexible cable layout design(both interactive and automatic).Then,research on the cable assembly process planning,including cable assembly path and manipulation planning,is reviewed.Finally,cable assembly simulation is introduced,which includes general cable information,cable collision detection data,and cable assembly process modeling.Current problems and future research directions are summarized at the end of the paper.展开更多
The flexible wearable chair is like a light weight mobile exoskeleton that allows people to sit any-where in any working position. The traditional chair is difficult to move to different working locations due to its l...The flexible wearable chair is like a light weight mobile exoskeleton that allows people to sit any-where in any working position. The traditional chair is difficult to move to different working locations due to its large size, heavy weight (~5 - 7 kg) and rigid structure and thus, they are inappropriate for workplaces where enough space is not available. Flexible wearable chair has a gross weight of 3 kg as it utilizes light-weight aluminium alloy members. Unlike the traditional chair, it consists of kinematic pairs which enable taking halts between continuous movements at any working position and thus, it is capable of reducing the risk of the physical musculoskeletal disorder substantially among workers. The objective of this paper is to focus on the mechanical design and finite element analysis (FEA) of the mechanism using ANSYS<sup>®</sup> software. In the present work, all the parts of the mechanism are designed under static load condition. The results of the analysis indicate that flexible wearable chair satisfies equilibrium and stability criterion and is capable of reducing fatigue during working in an assembly line/factory.展开更多
The significance of study on flexible fixture CAD methods is summarized. Based on the AUTOCAD software, represented with slot Modular fixture dements, the flexible fixture CAD methods are discussed, such as part repre...The significance of study on flexible fixture CAD methods is summarized. Based on the AUTOCAD software, represented with slot Modular fixture dements, the flexible fixture CAD methods are discussed, such as part representative model,feature modeling,design method,structure of the graphic library, optimization of assembly drawing structure, optimal choice of interactive function, and CAD Information database management.展开更多
Aiming at the characteristics of obvious block division and strong discreteness in the assembly production mode of electronic products,this paper proposes a composite U-shaped flexible assembly line model,and establis...Aiming at the characteristics of obvious block division and strong discreteness in the assembly production mode of electronic products,this paper proposes a composite U-shaped flexible assembly line model,and establishes a multi-objective optimization mathematical model on this basis.According to the characteristics of the model,the improved ranked positional weight(RPW)method is used to adjust the generation process of the initial solution of the genetic algorithm,so that the genetic algorithm can be applied to the block task model.At the same time,the adaptive cross mutation factor is used on the premise that tasks between different blocks are not crossed during cross mutation,which effectively improves the probability of excellent individuals retaining.After that,the algorithm is used to iterate to obtain the optimal solution task assignment.Finally,the algorithm results are compared with actual production data,which verifies the validity and feasibility of the assembly line model for discrete production mode proposed in this paper.展开更多
Assembly variation analysis of parts that have flexible curved surfaces is much more difficult than that of solid bodies, because of structural deformations in the assembly process. Most of the current variation analy...Assembly variation analysis of parts that have flexible curved surfaces is much more difficult than that of solid bodies, because of structural deformations in the assembly process. Most of the current variation analysis methods either neglect the relationships among feature points on part surfaces or regard the distribution of all feature points as the same. In this study, the problem of flexible curved surface assembly is simplified to the matching of side lines. A methodology based on Bézier curves is proposed to represent the side lines of surfaces. It solves the variation analysis problem of flexible curved surface assembly when considering surface continuity through the relations between control points and data points. The deviations of feature points on side lines are obtained through control point distribution and are then regarded as inputs in commercial finite element analysis software to calculate the final product deformations. Finally, the proposed method is illustrated in two cases of antenna surface assembly.展开更多
To solve the sequencing problem in mixed-model flexible assembly lines (MMFALs) with variable launching intervals, a mathematical model aiming to minimize the cost of utility and idle times is developed. To obtain hig...To solve the sequencing problem in mixed-model flexible assembly lines (MMFALs) with variable launching intervals, a mathematical model aiming to minimize the cost of utility and idle times is developed. To obtain high-quality sequences, an advanced scatter search (ASS) algorithm is proposed. A heuristic approach, i.e. launching intervals between products algorithm (LIBPA), is incorporated into the ASS algorithm to solve the launching interval problem for each sequence. Numerical experiments with different scales are conducted to compare the performance of ASS with genetic algorithm (GA). In addition, we compare the cost of variable launching intervals approach with fixed launching intervals approach. The results indicate that the ASS is efficient and effective, and considering variable launching intervals in mixed-model assembly lines (MMALs) sequencing problem can improve the performance of the line.展开更多
Silver nanowire(AgNW)networks hold great promises as next-generation flex-ible transparent electrodes(FTEs)for high-performance flexible optoelectronic devices.However,achieving large-area flexible AgNW network electr...Silver nanowire(AgNW)networks hold great promises as next-generation flex-ible transparent electrodes(FTEs)for high-performance flexible optoelectronic devices.However,achieving large-area flexible AgNW network electrodes with low sheet resistance,high optical transmittance,and a smooth surface remains a grand challenge.Here,we report a straightforward and cost-effective roll-to-roll method that includes interface assembly/wetting-induced climbing transfer,nanowelding,and washing processess to fabricate flexible ordered lay-ered AgNW electrodes with high network uniformity.By manipulating the stacking number of the interfacially assembled AgNW monolayer,we can pre-cisely tailor and balance the transparency and the conductivity of the elec-trodes,achieving an exceptional Figure of Merit(FoM)value of 862.Moreover,the ordered layered structure enhances surface smoothness,compared with randomly arranged structures.To highlight the potential of these ordered lay-ered AgNW network electrodes in flexible optoelectronic devices,we success-fully employ them as highly sensitive strain sensors,large-area flexible touch screens,and flexible smart windows.Overall,this work represents a substantial advance toward high-performance FTEs over large areas,opening up exciting opportunities for the development of advanced optoelectronic devices.展开更多
基金This work was supported by the National Natural Science Foundation of China(nos.21988102,and 22305026)the China Postdoctoral Science Foundation(2019M650433).
文摘The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.
文摘The computer numerical control(CNC) system is suited to control varied types of flexible fixtures in aircraft component manufacturing and assembly. The mechanisms and control requirements of flexible fixtures are presented and analyzed. The hardware and software architecture and implementation of CNC system are pro- posed. The flexible fixture mechanism is described using configuration parameters. According to the parameters, the CNC system automatically generates the control feature and the human machine interface (HMI) operation function. The CNC system is implemented in a flexible fixture for skin-strlnger assembly, and results show the effectiveness of the system.
基金This project is supported by National 863 Plan (No.2001AA411140)National Natural Science Foundation of China (No.50175071).
文摘There are many welding fixture layout design problems of flexible parts inbody-in-white assembly process, which directly cause body assemble variation. The fixture layoutdesign quality is mainly influenced by the position and quantity of fixture locators and clamps. Ageneral analysis model of flexible assembles deformation caused by fixture is set up based on'N-2-l' locating principle, in which the locator and damper are treated as the same fixture layoutelements. An analysis model for the flexible part deformation in fixturing is set up in order toobtain the optimization object function and constraints accordingly. The final fixture elementlayout could be obtained through global optimal research by using improved genetic algorithm, whicheffectively decreases fixture elements layout influence on flexible assembles deformation.
基金supported by the National Natural Science Foundation of China(6210333962073261)+1 种基金Shaanxi Natural Science Basic Research Program(2023-JC-YB-569)the Fundamental Research Funds for the Central Universities。
文摘In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich assembly mode which consists of the isomorphic module structure and the standard mechanical-electric-data-thermal interfaces.The advantages of the sandwich assembly mode include flexible reconfiguration and efficient assembly.The prototype of the sandwich assembly mode is built for verifying the performance and the feasibility of the proposed mechanical-electric-data-thermal interfaces.Finally,an assembly case is accomplished to demonstrate the validity and advantages of the proposed“Tetris”microsatellite platform.
基金Supported by the National Natural Science Foundation of China(No.11672290)
文摘To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots.
文摘Today's production systems are demanded to exhibit an increased flexibility and mutability in order to deal with dynamically changing conditions, objectives and an increasing number of product variants within industrial turbulent environments. Flexible automated systems are requested in order to improve dynamic production efficiency, e.g. robot-based hardware and PC-based controllers, but these usually induce a significantly higher production complexity, whereby the efforts for planning and programming, but also setups and reconfiguration, expand. In this paper a definition and some concepts of self-optimizing assembly systems are presented to describe possible ways to reduce the planning efforts in complex production systems. The concept of self-optimization in assembly systems will be derived from a theoretical approach and will be transferred to a specific application scenario---the automated assembly of a miniaturized solid state laser--where the challenges of unpredictable influences from e.g. component tolerances can be overcome by the help of self-optimization.
文摘The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-object problem, such as the fuzzy cost, the fuzzy due-date, and the fuzzy makespan, etc, can be solved by FGFJSP. To optimize FGFJSP, an individual optimization and colony diversity genetic algorithm (IOCDGA) is presented to accelerate the convergence speed and to avoid the earliness. In IOCDGA, the colony average distance and the colony entropy are defined after the definition of the encoding model. The colony diversity is expressed by the colony average distance and the colony entropy. The crossover probability and the mutation probability are controlled by the colony diversity. The evolution emphasizes that sigle individual or a few individuals evolve into the best in IOCDGA, but not the all in classical GA. Computational results show that the algorithm is applicable and the number of iterations is less.
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
基金This project is supported by National Natural Science Foundation of China(No.59990470,No.59725514,No.59985004)and Robotics Laboratory,Chinese Academy of Sciences Foundation(No.RL200006)
文摘An integrated approach to generation of precedence relations and precedencegraphs for assembly sequence planning is presented, which contains more assembly flexibility. Theapproach involves two stages. Based on the assembly model, the components in the assembly can bedivided into partially constrained components and completely con-strained components in the firststage, and then geometric precedence relation for every component is generated automatically.According to the result of the first stage, the second stage determines and constructs allprecedence graphs. The algorithms of these two stages proposed are verified by two assemblyexamples.
文摘The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model.
基金the National Defense Fundamental Research Foundation of China(JCKY2017204B502,JCKY2016204A502)and National Natural Science Foundation of China(51935003).
文摘The layout and assembly of flexible cables play important roles in the design and development of complex electromechanical products.The rationality of cable layout design and the reliability of cable assembly greatly affect product quality.In this paper,we review the methods of cable layout design,cable assembly process planning,and cable assembly simulation.We first review research on flexible cable layout design(both interactive and automatic).Then,research on the cable assembly process planning,including cable assembly path and manipulation planning,is reviewed.Finally,cable assembly simulation is introduced,which includes general cable information,cable collision detection data,and cable assembly process modeling.Current problems and future research directions are summarized at the end of the paper.
文摘The flexible wearable chair is like a light weight mobile exoskeleton that allows people to sit any-where in any working position. The traditional chair is difficult to move to different working locations due to its large size, heavy weight (~5 - 7 kg) and rigid structure and thus, they are inappropriate for workplaces where enough space is not available. Flexible wearable chair has a gross weight of 3 kg as it utilizes light-weight aluminium alloy members. Unlike the traditional chair, it consists of kinematic pairs which enable taking halts between continuous movements at any working position and thus, it is capable of reducing the risk of the physical musculoskeletal disorder substantially among workers. The objective of this paper is to focus on the mechanical design and finite element analysis (FEA) of the mechanism using ANSYS<sup>®</sup> software. In the present work, all the parts of the mechanism are designed under static load condition. The results of the analysis indicate that flexible wearable chair satisfies equilibrium and stability criterion and is capable of reducing fatigue during working in an assembly line/factory.
文摘The significance of study on flexible fixture CAD methods is summarized. Based on the AUTOCAD software, represented with slot Modular fixture dements, the flexible fixture CAD methods are discussed, such as part representative model,feature modeling,design method,structure of the graphic library, optimization of assembly drawing structure, optimal choice of interactive function, and CAD Information database management.
文摘Aiming at the characteristics of obvious block division and strong discreteness in the assembly production mode of electronic products,this paper proposes a composite U-shaped flexible assembly line model,and establishes a multi-objective optimization mathematical model on this basis.According to the characteristics of the model,the improved ranked positional weight(RPW)method is used to adjust the generation process of the initial solution of the genetic algorithm,so that the genetic algorithm can be applied to the block task model.At the same time,the adaptive cross mutation factor is used on the premise that tasks between different blocks are not crossed during cross mutation,which effectively improves the probability of excellent individuals retaining.After that,the algorithm is used to iterate to obtain the optimal solution task assignment.Finally,the algorithm results are compared with actual production data,which verifies the validity and feasibility of the assembly line model for discrete production mode proposed in this paper.
基金supported by the National Natural Science Foundation of China(Nos.51490663,51475418,and U1608256)the National Basic Research Program(973)of China(No.2015CB058100)
文摘Assembly variation analysis of parts that have flexible curved surfaces is much more difficult than that of solid bodies, because of structural deformations in the assembly process. Most of the current variation analysis methods either neglect the relationships among feature points on part surfaces or regard the distribution of all feature points as the same. In this study, the problem of flexible curved surface assembly is simplified to the matching of side lines. A methodology based on Bézier curves is proposed to represent the side lines of surfaces. It solves the variation analysis problem of flexible curved surface assembly when considering surface continuity through the relations between control points and data points. The deviations of feature points on side lines are obtained through control point distribution and are then regarded as inputs in commercial finite element analysis software to calculate the final product deformations. Finally, the proposed method is illustrated in two cases of antenna surface assembly.
基金the National Natural Science Foundation of China(No.71071115)the National High Technology Research and Development Program (863) of China(No.2009AA043000)
文摘To solve the sequencing problem in mixed-model flexible assembly lines (MMFALs) with variable launching intervals, a mathematical model aiming to minimize the cost of utility and idle times is developed. To obtain high-quality sequences, an advanced scatter search (ASS) algorithm is proposed. A heuristic approach, i.e. launching intervals between products algorithm (LIBPA), is incorporated into the ASS algorithm to solve the launching interval problem for each sequence. Numerical experiments with different scales are conducted to compare the performance of ASS with genetic algorithm (GA). In addition, we compare the cost of variable launching intervals approach with fixed launching intervals approach. The results indicate that the ASS is efficient and effective, and considering variable launching intervals in mixed-model assembly lines (MMALs) sequencing problem can improve the performance of the line.
基金supported by the National Natural Science Foundation of China(nos.21988102 and 22305026)the China Postdoctoral Science Foundation(2019M650433).
文摘Silver nanowire(AgNW)networks hold great promises as next-generation flex-ible transparent electrodes(FTEs)for high-performance flexible optoelectronic devices.However,achieving large-area flexible AgNW network electrodes with low sheet resistance,high optical transmittance,and a smooth surface remains a grand challenge.Here,we report a straightforward and cost-effective roll-to-roll method that includes interface assembly/wetting-induced climbing transfer,nanowelding,and washing processess to fabricate flexible ordered lay-ered AgNW electrodes with high network uniformity.By manipulating the stacking number of the interfacially assembled AgNW monolayer,we can pre-cisely tailor and balance the transparency and the conductivity of the elec-trodes,achieving an exceptional Figure of Merit(FoM)value of 862.Moreover,the ordered layered structure enhances surface smoothness,compared with randomly arranged structures.To highlight the potential of these ordered lay-ered AgNW network electrodes in flexible optoelectronic devices,we success-fully employ them as highly sensitive strain sensors,large-area flexible touch screens,and flexible smart windows.Overall,this work represents a substantial advance toward high-performance FTEs over large areas,opening up exciting opportunities for the development of advanced optoelectronic devices.