Flexible supercapacitors are promising energy storage devices in wearable smart electronics. Exploring cost-efficient electrodes with high capacitance would promote the wide-scale application of such capacitors. Herei...Flexible supercapacitors are promising energy storage devices in wearable smart electronics. Exploring cost-efficient electrodes with high capacitance would promote the wide-scale application of such capacitors. Herein, in order to explore a methodology for preparing low cost, flexible, tough, and up-scalable supercapacitor electrodes, silk textile is directly carbonized to make a conductive free-standing textile substrate. Through mildly baking the surfactant-free TiCTflakes suspension loaded on the carbonized silk cloth, a uniform and adhesive coating consisting of nanometer-thick TiCTflakes is well established on the conductive fabric support, forming a MXene-coated flexible textile electrode. The fabricated electrode exhibits a high areal capacitance of 362 m F/cm~2 with excellent cyclability and flexibility. Moreover,capacitance changes neglegibly under the bending deformation mode. This study elucidates the feasibility of using silk-derived carbon cloth from biomss for MXene-based flexible supercapacitor.展开更多
Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.Howe...Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.However,during the intercalation of Li ions into the matrix of CFC(below 0.5 V vs.Li/Li+),the incompatibility in the capacity of the CFC,when used directly as an anode material or as a current collector for active materials,leads to difficulty in the estimation of its actual contribution.To address this issue,we prepared Ni_(5)P_(4)nanosheets on CFC(denoted CFC@Ni_(5)P_(4))and investigated the contribution of CFC in the CFC@Ni_(5)P_(4)by comparing to the powder Ni_(5)P_(4)nanosheets traditionally coated on a copper foil(CuF)(denoted P-Ni_(5)P_(4)).At a current density of 0.4 mA cm^(−2),the as-prepared CFC@Ni_(5)P_(4)showed an areal capacity of 7.38 mAh cm^(−2),which is significantly higher than that of the PNi_(5)P_(4)electrode.More importantly,theoretical studies revealed that the CFC has a high Li adsorption energy that contributes to the low Li-ion diffusion energy barrier of the Ni_(5)P_(4)due to the strong interaction between the CFC and Ni_(5)P_(4),leading to the superior Li-ion storage performance of the CFC@Ni_(5)P_(4)over the pristine Ni_(5)P_(4)sample.This present work unveils the underlying mechanism leading to the achievement of high performance in SSEMs.展开更多
In this study,nano-sized SnO_(2) decorated on carbon cloth(SnO_(2)/CC)is prepared through a simple and facile solid method.The nano-sized SnO_(2) is uniformly distributed on the surface of carbon fibers in carbon clot...In this study,nano-sized SnO_(2) decorated on carbon cloth(SnO_(2)/CC)is prepared through a simple and facile solid method.The nano-sized SnO_(2) is uniformly distributed on the surface of carbon fibers in carbon cloth,providing sufficient free space to relieve volume expansion and reduce electrode pulverization during cycling.The as-prepared SnO_(2)/CC as a flexible,self-supporting and additive-free anode electrode for sodium-ion/lithium-ion batteries(SIBs/LIBs)can demonstrate outstanding electrochemical performance.SnO_(2)/CC after annealing at 350℃(SC-350)as an anode for SIBs can deliver a reversible capacity of 0.587 mA h cm^(-2)at the current density of 0.3 mA cm^(-2)after 100 cycles.In addition,when cycling at 1.5 mA cm^(-2),SC-350 can maintain 1.69 mA h cm^(-2)after 500 cycles when used as LIB anode.These results illustrate that the as-prepared SnO_(2)/CC can be a promising flexible anode material for flexible SIBs/LIBs and provide a simple and practical method for designing new flexible electrode materials.展开更多
Along with the popularity of environmental protection concepts, the environmental treatment of water pollution attracts widespread attention, among which, the research on Bi-based semiconductor photocatalytic degradat...Along with the popularity of environmental protection concepts, the environmental treatment of water pollution attracts widespread attention, among which, the research on Bi-based semiconductor photocatalytic degradation technology has made great progress. However, the development of such bismuth-based composites still remains a challenging task due to difficult recovery and low catalytic efficiency. Herein, a novel CC/BiPO4</sub>/Bi2</sub>WO6</sub> composite was successfully synthesized through two-step hydrothermal method using activated flexible carbon cloth as a substrate. The results of the photocatalytic degradation experiments showed that the obtained CC/BiPO<sub>4</sub>/Bi<sub>2</sub>WO<sub>6</sub> composites can degrade 92.1% RhB in 60 min under UV-visible light irradiation, which was much higher than that of unloaded BiPO4</sub> (24.4%) and BiPO4</sub>/Bi2</sub>WO6</sub> (52.9%), exhibiting a better adsorption-photocatalytic degradation performance than BiPO4</sub> and BiPO4</sub>/Bi2</sub>WO6</sub>. Photoluminescence spectra indicated that the improved photocatalytic activity was due to the more effective inhibition of photogenerated carrier complexation. Furthermore, the radical capture experiments confirmed that h<sup>+</sup>, ·OH and O<sub>2</sub>-</sup> were the main active substances in the photocatalytic degradation process of RhB by the CC/BiPO4</sub>/Bi2</sub>WO6</sub> composites. More importantly, the prepared CC/BiPO4</sub>/Bi2</sub>WO6</sub> composite had a simple separation process and good recycling stability, and its photocatalytic degradation efficiency can still reach 53.3% after six cycles of RhB degradation. .展开更多
基金supported by the Youth Innovation Promotion Association,Chinese Academy of Sciences(CAS)under grant no.2011152Shenyang National Laboratory for Materials Science,Institute of Metal Research,CAS,under grant no.2017RP06
文摘Flexible supercapacitors are promising energy storage devices in wearable smart electronics. Exploring cost-efficient electrodes with high capacitance would promote the wide-scale application of such capacitors. Herein, in order to explore a methodology for preparing low cost, flexible, tough, and up-scalable supercapacitor electrodes, silk textile is directly carbonized to make a conductive free-standing textile substrate. Through mildly baking the surfactant-free TiCTflakes suspension loaded on the carbonized silk cloth, a uniform and adhesive coating consisting of nanometer-thick TiCTflakes is well established on the conductive fabric support, forming a MXene-coated flexible textile electrode. The fabricated electrode exhibits a high areal capacitance of 362 m F/cm~2 with excellent cyclability and flexibility. Moreover,capacitance changes neglegibly under the bending deformation mode. This study elucidates the feasibility of using silk-derived carbon cloth from biomss for MXene-based flexible supercapacitor.
基金National Natural Science Foundation of China,Grant/Award Numbers:21875292,21902188National Key Research and Development Program of China,Grant/Award Number:2019YFA0705702+2 种基金Hunan Provincial Natural Science Foundation,Grant/Award Number:2021JJ30087Natural Science Foundation of Guangdong Province,Grant/Award Number:2020A1515010798Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy,Grant/Award Number:2020CB1007。
文摘Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.However,during the intercalation of Li ions into the matrix of CFC(below 0.5 V vs.Li/Li+),the incompatibility in the capacity of the CFC,when used directly as an anode material or as a current collector for active materials,leads to difficulty in the estimation of its actual contribution.To address this issue,we prepared Ni_(5)P_(4)nanosheets on CFC(denoted CFC@Ni_(5)P_(4))and investigated the contribution of CFC in the CFC@Ni_(5)P_(4)by comparing to the powder Ni_(5)P_(4)nanosheets traditionally coated on a copper foil(CuF)(denoted P-Ni_(5)P_(4)).At a current density of 0.4 mA cm^(−2),the as-prepared CFC@Ni_(5)P_(4)showed an areal capacity of 7.38 mAh cm^(−2),which is significantly higher than that of the PNi_(5)P_(4)electrode.More importantly,theoretical studies revealed that the CFC has a high Li adsorption energy that contributes to the low Li-ion diffusion energy barrier of the Ni_(5)P_(4)due to the strong interaction between the CFC and Ni_(5)P_(4),leading to the superior Li-ion storage performance of the CFC@Ni_(5)P_(4)over the pristine Ni_(5)P_(4)sample.This present work unveils the underlying mechanism leading to the achievement of high performance in SSEMs.
基金financially supported by the National Natural Science Foundation of China(No.91963118)the Fundamental Research Funds for the Central Universities(No.2412019ZD010)。
文摘In this study,nano-sized SnO_(2) decorated on carbon cloth(SnO_(2)/CC)is prepared through a simple and facile solid method.The nano-sized SnO_(2) is uniformly distributed on the surface of carbon fibers in carbon cloth,providing sufficient free space to relieve volume expansion and reduce electrode pulverization during cycling.The as-prepared SnO_(2)/CC as a flexible,self-supporting and additive-free anode electrode for sodium-ion/lithium-ion batteries(SIBs/LIBs)can demonstrate outstanding electrochemical performance.SnO_(2)/CC after annealing at 350℃(SC-350)as an anode for SIBs can deliver a reversible capacity of 0.587 mA h cm^(-2)at the current density of 0.3 mA cm^(-2)after 100 cycles.In addition,when cycling at 1.5 mA cm^(-2),SC-350 can maintain 1.69 mA h cm^(-2)after 500 cycles when used as LIB anode.These results illustrate that the as-prepared SnO_(2)/CC can be a promising flexible anode material for flexible SIBs/LIBs and provide a simple and practical method for designing new flexible electrode materials.
文摘Along with the popularity of environmental protection concepts, the environmental treatment of water pollution attracts widespread attention, among which, the research on Bi-based semiconductor photocatalytic degradation technology has made great progress. However, the development of such bismuth-based composites still remains a challenging task due to difficult recovery and low catalytic efficiency. Herein, a novel CC/BiPO4</sub>/Bi2</sub>WO6</sub> composite was successfully synthesized through two-step hydrothermal method using activated flexible carbon cloth as a substrate. The results of the photocatalytic degradation experiments showed that the obtained CC/BiPO<sub>4</sub>/Bi<sub>2</sub>WO<sub>6</sub> composites can degrade 92.1% RhB in 60 min under UV-visible light irradiation, which was much higher than that of unloaded BiPO4</sub> (24.4%) and BiPO4</sub>/Bi2</sub>WO6</sub> (52.9%), exhibiting a better adsorption-photocatalytic degradation performance than BiPO4</sub> and BiPO4</sub>/Bi2</sub>WO6</sub>. Photoluminescence spectra indicated that the improved photocatalytic activity was due to the more effective inhibition of photogenerated carrier complexation. Furthermore, the radical capture experiments confirmed that h<sup>+</sup>, ·OH and O<sub>2</sub>-</sup> were the main active substances in the photocatalytic degradation process of RhB by the CC/BiPO4</sub>/Bi2</sub>WO6</sub> composites. More importantly, the prepared CC/BiPO4</sub>/Bi2</sub>WO6</sub> composite had a simple separation process and good recycling stability, and its photocatalytic degradation efficiency can still reach 53.3% after six cycles of RhB degradation. .