Conventionally,flexible barriers are rated based on their ability to resist a free-falling boulder with a particular input energy.However,there is still no well-accepted approach for evaluating performance of flexible...Conventionally,flexible barriers are rated based on their ability to resist a free-falling boulder with a particular input energy.However,there is still no well-accepted approach for evaluating performance of flexible barrier under debris flow impact.In this study,a large-nonlinear finite-element model was used to back-analyze centrifuge tests to discern the effects of impact material type,barrier stiffness,and flow aspect ratio(flow height to flow length)on the reaction force between the impacting medium and flexible barrier.Results show that,in contrast to flexible barriers for resisting rockfall,the normal impact force induced by the highly frictional and viscous debris is insensitive to barrier stiffness.This is because the elongated distributions of kinetic energy are mainly dissipated by the internal and boundary shearing,and only a small portion is forwarded to the barrier.Furthermore,a new stiffness number is proposed to characterize the equivalent stiffness between a debris flow or a boulder,and a flexible barrier.Under the circumstance of an extremely elongated debris flow event,i.e.,low aspect ratio,the load on a barrier is dominated by the static component and thus not sensitive to the barrier stiffness.展开更多
In this paper, a flexible high-precision calibration method suitable for industrial field was proposed. The complexity of the coordinate transformation was simplified by choosing the camera coordinate system as the un...In this paper, a flexible high-precision calibration method suitable for industrial field was proposed. The complexity of the coordinate transformation was simplified by choosing the camera coordinate system as the unified reference coordinate system. A flexible planar calibration pattern was introduced to the calibration process, which can be arbitrarily placed and from which the known feature points can be extracted to construct other unknown feature points. With the known intrinsic parameters, the laser projector plane equation was fitted by the multi-noncollinear points, which were acquired through the principle of triangulation and the projective invariance of cross ratio. With this method, the strict alignment and multiple times of coordinate transformation can be avoided. Experimental results showed that the arithmetic mean of the root mean square(RMS) error of distance was 0.000 7 mm.展开更多
Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the ...Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the cross-sectional parameters and constructional parameters are optimized respectively. The cross-sectional and configurational parameters are optimized simultaneously. The numerical simulation of a 4R spatial manipulator is performed. The results show that the load capacity of robots has been greatly improved through the optimization strategies proposed in this paper.展开更多
The overall bending of circular ring shells subjected to bending moments and lateral forces is discussed. The derivation of the equations was based upon the theory of flexible shells generalized by E.L. Axelrad and th...The overall bending of circular ring shells subjected to bending moments and lateral forces is discussed. The derivation of the equations was based upon the theory of flexible shells generalized by E.L. Axelrad and the assumption of the moderately slender ratio less than 1/3 (i.e., ratio between curvature radius of the meridian and distance from the meridional curvature center to the axis of revolution). The present general solution is an analytical one convergent in the whole domain of the shell and with the necessary integral constants for the boundary value problems. It can be used to calculate the stresses and displacements of the related bellows. The whole work is arranged into four parts: (Ⅰ) Governing equation and general solution; (Ⅱ) Calculation for Omega_shaped bellows; (Ⅲ) Calculation for C_shaped bellows; (Ⅳ) Calculation for U_shaped bellows. This paper is the first part.展开更多
The effect of the mass ratio on the flow-induced vibration (FIV) of a flexible circular cylinder is experimentally investigated in a towing tank. A Tygon tube with outer and inner diameters of 7.9 mm and 4.8 mm, res...The effect of the mass ratio on the flow-induced vibration (FIV) of a flexible circular cylinder is experimentally investigated in a towing tank. A Tygon tube with outer and inner diameters of 7.9 mm and 4.8 mm, respectively, was employed for the study. The tube was connected to a carriage and towed from rest to a steady speed up to 1.6 m/s before slowing down to rest again over a distance of 1.6 m in still water. Reynolds number based on the cylinder's outer diameter was 800-13,000, and the reduced velocity (velocity normalized by the cylinder's natural frequency and outer diameter) spanned from 2 to 25. When connected, the cylinder was elongated from 420 mm to 460 mm under an axial pre-tension of 11 N. Based on the cylinder's elongated length, the aspect ratio (ratio of the cylinder's length to outer diameter) was calculated as 58. Three mass ratios (ratio of the cylinder's structural mass to displaced fluid mass, m*) of 0.7, 1.0, and 3.4 were determined by filling the cylinder's interior with air, water, and alloy powder (nickel-chromium-boron matrix alloy), respectively. An optical method was adopted for response measurements. Multi-frequency vibrations were observed in both in-line (IL) and cross-flow (CF) responses; at high Reynolds number, vibration modes up to the 3rd one were identified in the CF response. The mode transition was found to occur at a lower reduced velocity for the highest tested mass ratio. The vibration amplitude and frequency were quantified and expressed with respect to the reduced velocity. A significant reduced vibration amplitude was found in the IL response with increasing mass ratios, and only initial and upper branches existed in the IL and CF response amplitudes. The normalized response frequencies were revealed to linearly increase with respect to the reduced velocity, and slopes for linear relations were found to be identical for the three cases tested.展开更多
In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were ...In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were presented. Two different polystyrene materials were utilized as deformable inclusions.Lateral dynamic earth pressures and wall displacements at different elevations of the retaining wallmodel were monitored during the tests. The earth pressures and displacements of the retaining wallswith deformable inclusions were compared with those of the models without geofoam inclusions.Comparisons indicated that geofoam panels of low stiffness installed against the retaining wall modelaffect displacement and dynamic lateral pressure profile along the wall height. Depending on the inclusioncharacteristics and the wall flexibility, up to 50% reduction in dynamic earth pressures wasobserved. The efficiency of load and displacement reduction decreased as the flexibility ratio of the wallmodel increased. On the other hand, dynamic load reduction efficiency of the deformable inclusionincreased as the amplitude and frequency ratio of the seismic excitation increased. Relative flexibility ofthe deformable layer (the thickness and the elastic stiffness of the polystyrene material) played animportant role in the amount of load reduction. Dynamic earth pressure coefficients were compared withthose calculated with an analytical approach. Pressure coefficients calculated with this method werefound to be in good agreement with the results of the tests performed on the wall model having lowflexibility ratio. It was observed that deformable inclusions reduce residual wall stresses observed at theend of seismic excitation thus contributing to the post-earthquake stability of the retaining wall. Thegraphs presented within this paper regarding the dynamic earth pressure coefficients versus the wallflexibility and inclusion characteristics may serve for the seismic design of full-scale retaining walls withdeformable polystyrene inclusions. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
On lunar exploration missions, the rovers which can move and explore directly are considered by various agency like NASA (National Aeronautics and Space Administration), JAXA (Japan Aerospace Exploration Agency), ...On lunar exploration missions, the rovers which can move and explore directly are considered by various agency like NASA (National Aeronautics and Space Administration), JAXA (Japan Aerospace Exploration Agency), ESA (European Space Agency). Lunar rovers are required to move on rough terrains such as craters and rear cliffs where it is scientifically very important to explore. However, there is a problem that the rovers have possibility of stack because of the lunar surface is covered with loose soil named Regolith. Therefore, this paper investigates a mechanism of kinetic behavior between the wheels of the exploration rovers and loose soil. And then, this paper proposed a flexible wheel to solve like that problems. The flexible wheel has the surface which can be changed flexibly toward rough terrain. Running experiments on loose soil which imitated regolith were carried out to observe the traversability of the flexible wheel using slip ratio. Traversality of flexible wheel was better than the circular rigid wheel. The authors believe that stress distribution is important. The stress distribution of the flexible wheels is horizontally long and stress value is small. However, the stress distribution can be changed by loaded more weight. Therefore, the relationship between the stress and the running performance was considered using this differential stress distribution. In experiments, the authors used the flexible wheel with simple structure (3 limbs). From these considerations, the relationship between the stress of the flexible wheel and the running performance was described.展开更多
Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility...Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.展开更多
It is difficult to access exfoliated sepiolite(Sep)fibers with high aspect ratio from Sep ore.The traditional method used to purify Sep ore also reduces its aspect ratio.In this study,impurities in the Sep ore were re...It is difficult to access exfoliated sepiolite(Sep)fibers with high aspect ratio from Sep ore.The traditional method used to purify Sep ore also reduces its aspect ratio.In this study,impurities in the Sep ore were removed by acid activation followed by a cetyltrimethylammonium chloride(C16)treatment to organically modify the purified Sep by cation exchange.Then,the organically-modified Sep(O-Sep)was stripped and processed by an ultrasonic cell crusher to obtain Sep microfibers at a specific frequency for a given period.These Sep samples had relatively high aspect ratio,compared with the Sep fibers gotten by traditional method.Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)demonstrate the micro-morphology of exfoliated Sep samples in an intuitive way.Moreover,pure inorganic membrane prepared only with the exfoliated Sep fibers exhibited excellent flexibility,further demonstrating the excellent properties of Sep fibers with high aspect ratio.展开更多
为了进一步降低园区综合能源系统(park-level integrated energy system,PIES)碳排放量,优化热电联产(combined heat and power,CHP)机组出力的灵活性,提出一种考虑改进阶梯型碳交易和CHP热电灵活输出的PIES低碳经济调度策略。首先,将...为了进一步降低园区综合能源系统(park-level integrated energy system,PIES)碳排放量,优化热电联产(combined heat and power,CHP)机组出力的灵活性,提出一种考虑改进阶梯型碳交易和CHP热电灵活输出的PIES低碳经济调度策略。首先,将遗传算法与模糊控制相结合,设计一种遗传模糊碳交易参数优化器,从而对现有阶梯型碳交易机制进行改进,实现该机制参数的自适应变化;其次,在传统CHP中加入卡琳娜(Kalina)循环与电锅炉(electricboiler,EB),构造CHP热电灵活输出模型,以同时满足电、热负荷的不同需求;然后,提出一种柔性指标——电、热输出占比率,进而计算出电、热输出占比率区间,以衡量CHP运行灵活性;最后,将改进阶梯型碳交易机制和CHP热电灵活输出模型协同优化,以系统运行成本和碳交易成本之和最小为目标,构建PIES低碳经济优化模型。算例分析表明,所提策略可有效降低经济成本和碳排放量,同时还可扩展CHP灵活输出调节范围,能够为PIES低碳经济调度提供参考。展开更多
Aiming at the problem that the asset’s fluctuation influences the borrower’s repayment ability,a loan with a new and flexible repayment method is designed,which depends on the asset value of the borrower.The repayme...Aiming at the problem that the asset’s fluctuation influences the borrower’s repayment ability,a loan with a new and flexible repayment method is designed,which depends on the asset value of the borrower.The repayment method can reduce the loan default probability,but it causes the uncertainty of the pay off time.Because the repayment term is related to the regular repayment amount in this method,a boundary for the regular repayment amount is set up in order to avoid too long repayment term.This will balance the benefit of borrowers and lenders and improve the applicability of this method.By establishing a mathematical model of the residual value of the loan,this model can be transformed into an initial-boundary problem of a partial differential equation.The analytic solution and the expected time to pay off the loan are obtained.Finally,numerical analysis are shown.展开更多
Investigating flexibility and stability boosting transmission expansion planning(TEP)methods can increase the renewable energy(RE)consumption of the power systems.In this study,we propose a bi-level TEP method for vol...Investigating flexibility and stability boosting transmission expansion planning(TEP)methods can increase the renewable energy(RE)consumption of the power systems.In this study,we propose a bi-level TEP method for voltage-source-converter-based direct current(VSC-DC),focusing on flexibility and stability enhancement.First,we established the TEP framework of VSC-DC,by introducing the evaluation indices to quantify the power system flexibility and stability.Subsequently,we propose a bi-level VSC-DC TEP model:the upper-level model acquires the optimal VSC-DC planning scheme by using the improved moth flame optimization(IMFO)algorithm,and the lower-level model evaluates the flexibility through time-series production simulation.Finally,we applied the proposedVSC-DC TEPmethod to the modified IEEE-24 and IEEE-39 test systems,and obtained the optimalVSCDC planning schemes.The results verified that the proposed method can achieve excellent RE curtailment with high flexibility and stability.Furthermore,the well-designed IMFO algorithm outperformed the traditional particle swarm optimization(PSO)and moth flame optimization(MFO)algorithms,confirming the effectiveness of the proposed approach.展开更多
基金support from the National Natural Science Foundation of China (Grant Nos. 51809261, 11672318, and 51709052)financial support from the Theme-based Research Grant T22-603/15N+1 种基金the General Research Fund 16209717 provided by the Research Grants Council of the Government of Hong Kong SAR, Chinafinancial support by the Hong Kong Jockey Club Disaster Preparedness and Response Institute (HKJCDPRI18EG01)
文摘Conventionally,flexible barriers are rated based on their ability to resist a free-falling boulder with a particular input energy.However,there is still no well-accepted approach for evaluating performance of flexible barrier under debris flow impact.In this study,a large-nonlinear finite-element model was used to back-analyze centrifuge tests to discern the effects of impact material type,barrier stiffness,and flow aspect ratio(flow height to flow length)on the reaction force between the impacting medium and flexible barrier.Results show that,in contrast to flexible barriers for resisting rockfall,the normal impact force induced by the highly frictional and viscous debris is insensitive to barrier stiffness.This is because the elongated distributions of kinetic energy are mainly dissipated by the internal and boundary shearing,and only a small portion is forwarded to the barrier.Furthermore,a new stiffness number is proposed to characterize the equivalent stiffness between a debris flow or a boulder,and a flexible barrier.Under the circumstance of an extremely elongated debris flow event,i.e.,low aspect ratio,the load on a barrier is dominated by the static component and thus not sensitive to the barrier stiffness.
基金Supported by the National Natural Science Foundation of China(No.51105273)
文摘In this paper, a flexible high-precision calibration method suitable for industrial field was proposed. The complexity of the coordinate transformation was simplified by choosing the camera coordinate system as the unified reference coordinate system. A flexible planar calibration pattern was introduced to the calibration process, which can be arbitrarily placed and from which the known feature points can be extracted to construct other unknown feature points. With the known intrinsic parameters, the laser projector plane equation was fitted by the multi-noncollinear points, which were acquired through the principle of triangulation and the projective invariance of cross ratio. With this method, the strict alignment and multiple times of coordinate transformation can be avoided. Experimental results showed that the arithmetic mean of the root mean square(RMS) error of distance was 0.000 7 mm.
文摘Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the cross-sectional parameters and constructional parameters are optimized respectively. The cross-sectional and configurational parameters are optimized simultaneously. The numerical simulation of a 4R spatial manipulator is performed. The results show that the load capacity of robots has been greatly improved through the optimization strategies proposed in this paper.
文摘The overall bending of circular ring shells subjected to bending moments and lateral forces is discussed. The derivation of the equations was based upon the theory of flexible shells generalized by E.L. Axelrad and the assumption of the moderately slender ratio less than 1/3 (i.e., ratio between curvature radius of the meridian and distance from the meridional curvature center to the axis of revolution). The present general solution is an analytical one convergent in the whole domain of the shell and with the necessary integral constants for the boundary value problems. It can be used to calculate the stresses and displacements of the related bellows. The whole work is arranged into four parts: (Ⅰ) Governing equation and general solution; (Ⅱ) Calculation for Omega_shaped bellows; (Ⅲ) Calculation for C_shaped bellows; (Ⅳ) Calculation for U_shaped bellows. This paper is the first part.
文摘The effect of the mass ratio on the flow-induced vibration (FIV) of a flexible circular cylinder is experimentally investigated in a towing tank. A Tygon tube with outer and inner diameters of 7.9 mm and 4.8 mm, respectively, was employed for the study. The tube was connected to a carriage and towed from rest to a steady speed up to 1.6 m/s before slowing down to rest again over a distance of 1.6 m in still water. Reynolds number based on the cylinder's outer diameter was 800-13,000, and the reduced velocity (velocity normalized by the cylinder's natural frequency and outer diameter) spanned from 2 to 25. When connected, the cylinder was elongated from 420 mm to 460 mm under an axial pre-tension of 11 N. Based on the cylinder's elongated length, the aspect ratio (ratio of the cylinder's length to outer diameter) was calculated as 58. Three mass ratios (ratio of the cylinder's structural mass to displaced fluid mass, m*) of 0.7, 1.0, and 3.4 were determined by filling the cylinder's interior with air, water, and alloy powder (nickel-chromium-boron matrix alloy), respectively. An optical method was adopted for response measurements. Multi-frequency vibrations were observed in both in-line (IL) and cross-flow (CF) responses; at high Reynolds number, vibration modes up to the 3rd one were identified in the CF response. The mode transition was found to occur at a lower reduced velocity for the highest tested mass ratio. The vibration amplitude and frequency were quantified and expressed with respect to the reduced velocity. A significant reduced vibration amplitude was found in the IL response with increasing mass ratios, and only initial and upper branches existed in the IL and CF response amplitudes. The normalized response frequencies were revealed to linearly increase with respect to the reduced velocity, and slopes for linear relations were found to be identical for the three cases tested.
文摘In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were presented. Two different polystyrene materials were utilized as deformable inclusions.Lateral dynamic earth pressures and wall displacements at different elevations of the retaining wallmodel were monitored during the tests. The earth pressures and displacements of the retaining wallswith deformable inclusions were compared with those of the models without geofoam inclusions.Comparisons indicated that geofoam panels of low stiffness installed against the retaining wall modelaffect displacement and dynamic lateral pressure profile along the wall height. Depending on the inclusioncharacteristics and the wall flexibility, up to 50% reduction in dynamic earth pressures wasobserved. The efficiency of load and displacement reduction decreased as the flexibility ratio of the wallmodel increased. On the other hand, dynamic load reduction efficiency of the deformable inclusionincreased as the amplitude and frequency ratio of the seismic excitation increased. Relative flexibility ofthe deformable layer (the thickness and the elastic stiffness of the polystyrene material) played animportant role in the amount of load reduction. Dynamic earth pressure coefficients were compared withthose calculated with an analytical approach. Pressure coefficients calculated with this method werefound to be in good agreement with the results of the tests performed on the wall model having lowflexibility ratio. It was observed that deformable inclusions reduce residual wall stresses observed at theend of seismic excitation thus contributing to the post-earthquake stability of the retaining wall. Thegraphs presented within this paper regarding the dynamic earth pressure coefficients versus the wallflexibility and inclusion characteristics may serve for the seismic design of full-scale retaining walls withdeformable polystyrene inclusions. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘On lunar exploration missions, the rovers which can move and explore directly are considered by various agency like NASA (National Aeronautics and Space Administration), JAXA (Japan Aerospace Exploration Agency), ESA (European Space Agency). Lunar rovers are required to move on rough terrains such as craters and rear cliffs where it is scientifically very important to explore. However, there is a problem that the rovers have possibility of stack because of the lunar surface is covered with loose soil named Regolith. Therefore, this paper investigates a mechanism of kinetic behavior between the wheels of the exploration rovers and loose soil. And then, this paper proposed a flexible wheel to solve like that problems. The flexible wheel has the surface which can be changed flexibly toward rough terrain. Running experiments on loose soil which imitated regolith were carried out to observe the traversability of the flexible wheel using slip ratio. Traversality of flexible wheel was better than the circular rigid wheel. The authors believe that stress distribution is important. The stress distribution of the flexible wheels is horizontally long and stress value is small. However, the stress distribution can be changed by loaded more weight. Therefore, the relationship between the stress and the running performance was considered using this differential stress distribution. In experiments, the authors used the flexible wheel with simple structure (3 limbs). From these considerations, the relationship between the stress of the flexible wheel and the running performance was described.
文摘Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.
基金Fundamental Research Funds for the Central Universities of ministry of Education of China(No.2232020G-04)National Key Research&Development Program of China(No.2018YFC1801500)。
文摘It is difficult to access exfoliated sepiolite(Sep)fibers with high aspect ratio from Sep ore.The traditional method used to purify Sep ore also reduces its aspect ratio.In this study,impurities in the Sep ore were removed by acid activation followed by a cetyltrimethylammonium chloride(C16)treatment to organically modify the purified Sep by cation exchange.Then,the organically-modified Sep(O-Sep)was stripped and processed by an ultrasonic cell crusher to obtain Sep microfibers at a specific frequency for a given period.These Sep samples had relatively high aspect ratio,compared with the Sep fibers gotten by traditional method.Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)demonstrate the micro-morphology of exfoliated Sep samples in an intuitive way.Moreover,pure inorganic membrane prepared only with the exfoliated Sep fibers exhibited excellent flexibility,further demonstrating the excellent properties of Sep fibers with high aspect ratio.
文摘为了进一步降低园区综合能源系统(park-level integrated energy system,PIES)碳排放量,优化热电联产(combined heat and power,CHP)机组出力的灵活性,提出一种考虑改进阶梯型碳交易和CHP热电灵活输出的PIES低碳经济调度策略。首先,将遗传算法与模糊控制相结合,设计一种遗传模糊碳交易参数优化器,从而对现有阶梯型碳交易机制进行改进,实现该机制参数的自适应变化;其次,在传统CHP中加入卡琳娜(Kalina)循环与电锅炉(electricboiler,EB),构造CHP热电灵活输出模型,以同时满足电、热负荷的不同需求;然后,提出一种柔性指标——电、热输出占比率,进而计算出电、热输出占比率区间,以衡量CHP运行灵活性;最后,将改进阶梯型碳交易机制和CHP热电灵活输出模型协同优化,以系统运行成本和碳交易成本之和最小为目标,构建PIES低碳经济优化模型。算例分析表明,所提策略可有效降低经济成本和碳排放量,同时还可扩展CHP灵活输出调节范围,能够为PIES低碳经济调度提供参考。
基金supported by the National Natural Science Foundation of China(No.11671301).
文摘Aiming at the problem that the asset’s fluctuation influences the borrower’s repayment ability,a loan with a new and flexible repayment method is designed,which depends on the asset value of the borrower.The repayment method can reduce the loan default probability,but it causes the uncertainty of the pay off time.Because the repayment term is related to the regular repayment amount in this method,a boundary for the regular repayment amount is set up in order to avoid too long repayment term.This will balance the benefit of borrowers and lenders and improve the applicability of this method.By establishing a mathematical model of the residual value of the loan,this model can be transformed into an initial-boundary problem of a partial differential equation.The analytic solution and the expected time to pay off the loan are obtained.Finally,numerical analysis are shown.
基金supported by the Science and Technology Project of Central China Branch of State Grid Corporation of China under Grant 52140023000T.
文摘Investigating flexibility and stability boosting transmission expansion planning(TEP)methods can increase the renewable energy(RE)consumption of the power systems.In this study,we propose a bi-level TEP method for voltage-source-converter-based direct current(VSC-DC),focusing on flexibility and stability enhancement.First,we established the TEP framework of VSC-DC,by introducing the evaluation indices to quantify the power system flexibility and stability.Subsequently,we propose a bi-level VSC-DC TEP model:the upper-level model acquires the optimal VSC-DC planning scheme by using the improved moth flame optimization(IMFO)algorithm,and the lower-level model evaluates the flexibility through time-series production simulation.Finally,we applied the proposedVSC-DC TEPmethod to the modified IEEE-24 and IEEE-39 test systems,and obtained the optimalVSCDC planning schemes.The results verified that the proposed method can achieve excellent RE curtailment with high flexibility and stability.Furthermore,the well-designed IMFO algorithm outperformed the traditional particle swarm optimization(PSO)and moth flame optimization(MFO)algorithms,confirming the effectiveness of the proposed approach.