When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter,not only does the sensitivity of the wheel/rail contact get higher,but also the vibration frequency range of the...When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter,not only does the sensitivity of the wheel/rail contact get higher,but also the vibration frequency range of the vehicle system gets enlarged and more frequencies are transmitted from the wheelset to the carbody.It is important to investigate the vibration characteristics and the dynamic frequency transmission from the wheel/rail interface to the carbody of the high-speed electric multi-uint(EMU).An elastic highspeed vehicle dynamics model is established in which the carbody,bogieframes,and wheelsets are all dealt with as flexible body.A rigid high-speed vehicle dynamics model is set up to compare with the simulation results of the elastic model.In the rigid vehicle model,the carbody,bogieframes and wheelsets are treated as rigid component while the suspension and structure parameters are the same as used in the elastic model.The dynamic characteristic of the elastic high speed vehicle is investigated in time and frequency domains and the di ff erence of the acceleration,frequency distribution and transmission of the two types of models are presented.The results show that the spectrum power density of the vehicle decreases from the wheelset to the carbody and the acceleration transmission ratio is approximately from 1%to 10%for each suspension system.The frequency of the wheelset rotation is evident in the vibration of the flexible model and is transmitted from the wheelset to the bogieframe and to thecarbody.The results of the flexible model are more reasonable than that of the rigid model.A field test data of the high speed train are presented to verify the simulation results.It shows that the simulation results are coincident with the field test data.展开更多
A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance ...A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance activities.The non-dominated sorting genetic algorithm 2(NSGA2)is applied to multi-objective optimization,and the optimization result is a set of Pareto solutions.Firstly,multistate failure mode analysis is conducted for the main devices leading to the failure of catenary,and then the reliability and failure mode of the whole catenary system is analyzed.The mathematical relationship between system reliability and maintenance cost is derived considering the existing catenary preventive maintenance mode to improve the reliability of the system.Secondly,an improved NSGA2(INSGA2)is proposed,which strengths population diversity by improving selection operator,and introduces local search strategy to ensure that population distribution is more uniform.The comparison results of the two algorithms before and after improvement on the zero-ductility transition(ZDT)series functions show that the population diversity is better and the solution is more uniform using INSGA2.Finally,the INSGA2 is applied to multi-objective optimization of system reliability and maintenance cost in different maintenance periods.The decision-makers can choose the reasonable solutions as the maintenance plans in the optimization results by weighing the relationship between the system reliability and the maintenance cost.The selected maintenance plans can ensure the lowest maintenance cost while the system reliability is as high as possible.展开更多
The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel...The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel web,a specifi coupling of wheel–rail contact with a fexible wheelset is presented and integrated into a conventional vehicle–track dynamic system model.Both conventional and the proposed dynamic system models are used to carry out numerical analyses on the effects of wheelset bending and axial deformation of the wheel web on wheel–rail rolling contact behaviors.Excitations with various irregularities and speeds were considered.The irregularities included measured track irregularity and harmonic irregularities with two different wavelengths.The speeds ranged from 200 to400km/h.The results show that the proposed model can characterize the effects of fexible wheelset deformation on the wheel–rail rolling contact behavior very well.展开更多
In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the ac...In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the actual measured track irregularities and line conditions were considered. The wear depth of the wheel profile was calculated by the well-known Archard wear law. Through this model, the influence of the wheel profile, primary suspension stiffness, track gage, and rail cant on the wear of wheel profile were studied through multiple iterafive calculations. Numerical simulation results show that the type XP55 wheel profile has the smallest cumulative wear depth, and the type LM wheel profile has the largest wear depth. To reduce the wear of the wheel profile, the equivalent conicity of the wheel should not be too large or too small. On the other hand, a small primary vertical stiffness, a track gage around 1,435-1,438 mm, and a rail cant around 1:35-1:40 are beneficial for dynamic performance improvement and wheel wear alleviation.展开更多
Track utilization is the most important technical operation in high-speed railway stations.It is an effective way to take flexible man-agement based on dispatchers’decision preferences into consideration for making t...Track utilization is the most important technical operation in high-speed railway stations.It is an effective way to take flexible man-agement based on dispatchers’decision preferences into consideration for making track utilization plans to relieve the influence caused by unmeasurable unstructured factors.Thus,based on the flexible management concept and taking the flexible optimal for track utilization in high-speed railway stations as the object,time and space occupation safety trajectories of arrival routes,departure routes and tracks are all analysed.Then,taking the following constraints into consideration-minimum safety time intervals for var-ious routes and tracks occupation,space-time arc occupation and decision-makers’preferences-a flexible optimal model for track utilization in high-speed railway stations is established to maximize its balance and robustness and to minimize its volatility at the same time.Further,a flexible optimal solution based on a simulated annealing algorithm is designed to make a safety track utilization plan in high-speed railway stations integrating the dispatchers’decision preference.The results from the experiments show that the proposed methodology can effectively make satisfied safety track utilization plans based on decision-makers’preferences,which can improve its balance and robustness level significantly.Meanwhile,its volatility can be reduced as much as possible caused by flexible management based on artificial intervention to ensure the relative stability of the plan.展开更多
基金supported by the National Natural Science Foundation of China(U1134201 and 51175032)the National Hitech Research and Development Program of China(973 Program)(211CD71104)
文摘When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter,not only does the sensitivity of the wheel/rail contact get higher,but also the vibration frequency range of the vehicle system gets enlarged and more frequencies are transmitted from the wheelset to the carbody.It is important to investigate the vibration characteristics and the dynamic frequency transmission from the wheel/rail interface to the carbody of the high-speed electric multi-uint(EMU).An elastic highspeed vehicle dynamics model is established in which the carbody,bogieframes,and wheelsets are all dealt with as flexible body.A rigid high-speed vehicle dynamics model is set up to compare with the simulation results of the elastic model.In the rigid vehicle model,the carbody,bogieframes and wheelsets are treated as rigid component while the suspension and structure parameters are the same as used in the elastic model.The dynamic characteristic of the elastic high speed vehicle is investigated in time and frequency domains and the di ff erence of the acceleration,frequency distribution and transmission of the two types of models are presented.The results show that the spectrum power density of the vehicle decreases from the wheelset to the carbody and the acceleration transmission ratio is approximately from 1%to 10%for each suspension system.The frequency of the wheelset rotation is evident in the vibration of the flexible model and is transmitted from the wheelset to the bogieframe and to thecarbody.The results of the flexible model are more reasonable than that of the rigid model.A field test data of the high speed train are presented to verify the simulation results.It shows that the simulation results are coincident with the field test data.
文摘A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance activities.The non-dominated sorting genetic algorithm 2(NSGA2)is applied to multi-objective optimization,and the optimization result is a set of Pareto solutions.Firstly,multistate failure mode analysis is conducted for the main devices leading to the failure of catenary,and then the reliability and failure mode of the whole catenary system is analyzed.The mathematical relationship between system reliability and maintenance cost is derived considering the existing catenary preventive maintenance mode to improve the reliability of the system.Secondly,an improved NSGA2(INSGA2)is proposed,which strengths population diversity by improving selection operator,and introduces local search strategy to ensure that population distribution is more uniform.The comparison results of the two algorithms before and after improvement on the zero-ductility transition(ZDT)series functions show that the population diversity is better and the solution is more uniform using INSGA2.Finally,the INSGA2 is applied to multi-objective optimization of system reliability and maintenance cost in different maintenance periods.The decision-makers can choose the reasonable solutions as the maintenance plans in the optimization results by weighing the relationship between the system reliability and the maintenance cost.The selected maintenance plans can ensure the lowest maintenance cost while the system reliability is as high as possible.
基金supported by the National Basic Research Program of China (Grant 2011CB711103)the National Natural Science Foundation of China (Grants U1134202,U1361117)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University (IRT1178)the 2014 Doctoral Innovation Funds of Southwest Jiaotong Universitythe Fundamental Research Funds for the Central Universities
文摘The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel web,a specifi coupling of wheel–rail contact with a fexible wheelset is presented and integrated into a conventional vehicle–track dynamic system model.Both conventional and the proposed dynamic system models are used to carry out numerical analyses on the effects of wheelset bending and axial deformation of the wheel web on wheel–rail rolling contact behaviors.Excitations with various irregularities and speeds were considered.The irregularities included measured track irregularity and harmonic irregularities with two different wavelengths.The speeds ranged from 200 to400km/h.The results show that the proposed model can characterize the effects of fexible wheelset deformation on the wheel–rail rolling contact behavior very well.
基金the support of the National Natural Science Foundation of China (No. 51005189)the National Key Technology R&D Program of China (2009BAG12A01)
文摘In order to reduce the wheel profile wear of highspeed trains and extend the service life of wheels, a dynamic model for a high-speed vehicle was set up, in which the wheelset was regarded as flexible body, and the actual measured track irregularities and line conditions were considered. The wear depth of the wheel profile was calculated by the well-known Archard wear law. Through this model, the influence of the wheel profile, primary suspension stiffness, track gage, and rail cant on the wear of wheel profile were studied through multiple iterafive calculations. Numerical simulation results show that the type XP55 wheel profile has the smallest cumulative wear depth, and the type LM wheel profile has the largest wear depth. To reduce the wear of the wheel profile, the equivalent conicity of the wheel should not be too large or too small. On the other hand, a small primary vertical stiffness, a track gage around 1,435-1,438 mm, and a rail cant around 1:35-1:40 are beneficial for dynamic performance improvement and wheel wear alleviation.
基金This research is supported by the Natural Science Foundation of China(Grants No.71971220 and 71901093)Hunan Provincial Natural Science Foundation of China(Grants No.2023JJ30710 and 2022JJ31020).
文摘Track utilization is the most important technical operation in high-speed railway stations.It is an effective way to take flexible man-agement based on dispatchers’decision preferences into consideration for making track utilization plans to relieve the influence caused by unmeasurable unstructured factors.Thus,based on the flexible management concept and taking the flexible optimal for track utilization in high-speed railway stations as the object,time and space occupation safety trajectories of arrival routes,departure routes and tracks are all analysed.Then,taking the following constraints into consideration-minimum safety time intervals for var-ious routes and tracks occupation,space-time arc occupation and decision-makers’preferences-a flexible optimal model for track utilization in high-speed railway stations is established to maximize its balance and robustness and to minimize its volatility at the same time.Further,a flexible optimal solution based on a simulated annealing algorithm is designed to make a safety track utilization plan in high-speed railway stations integrating the dispatchers’decision preference.The results from the experiments show that the proposed methodology can effectively make satisfied safety track utilization plans based on decision-makers’preferences,which can improve its balance and robustness level significantly.Meanwhile,its volatility can be reduced as much as possible caused by flexible management based on artificial intervention to ensure the relative stability of the plan.