In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting di...In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting differential algebraic equations is presented on the basis of the Newmark direct integration method combined with the Newton-Raphson iterative method. The sub beams are treated as small deformation in the convected coordinate systems, which can greatly simplify the deformation description. The rigid motions of the sub beams are taken into account through the motions of the convected coordinate systems. Numerical ex- amples are carried out, where results show the effectiveness of the proposed method.展开更多
文摘In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting differential algebraic equations is presented on the basis of the Newmark direct integration method combined with the Newton-Raphson iterative method. The sub beams are treated as small deformation in the convected coordinate systems, which can greatly simplify the deformation description. The rigid motions of the sub beams are taken into account through the motions of the convected coordinate systems. Numerical ex- amples are carried out, where results show the effectiveness of the proposed method.