期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Development of a Flexible Multibody Model to Simulate Nonlinear Effects in Printing Process 被引量:1
1
作者 Martin Eckl Thomas Lepper Berend Denkena 《Modern Mechanical Engineering》 2016年第1期10-19,共10页
Modern high speed printing machines are able to print up to 700 m/min. At this rate, little excita-tions lead to vibrations, which may lead to loss of contact between the rollers (bouncing). This bouncing results in w... Modern high speed printing machines are able to print up to 700 m/min. At this rate, little excita-tions lead to vibrations, which may lead to loss of contact between the rollers (bouncing). This bouncing results in white stripes, being visible on the printed image. To enable the simulation of the whole printing process, including effects like bouncing, a discrete multibody model is developed. The rollers are modeled by several rigid bodies. These bodies are connected to each other by rotational springs, which allow simulation of the first bending eigenmodes of each roller. The contact area between the rollers is modeled by several nonlinear translational springs and damping elements. These elements change their stiffness and damping values depending on the distance between the rollers. If a defined distance is exceeded, the values become zero, which represents the loss of contact (bouncing). The unknown spring and damping elements of this model are parametrized with help of an experimental modal analysis. This paper presents the development of a flexible multibody model to simulate nonlinear effects in printing process. 展开更多
关键词 flexible multi body Simulation Flexographic Printing
下载PDF
Modeling of large scale solar cell handling robot with belt-driven flexible arms
2
作者 Eun Yim Cho Jinsu Kim Sungsoo Rhim 《Theoretical & Applied Mechanics Letters》 CAS 2013年第1期77-80,共4页
To increase the competition of the solar energy collection system, the size of the solar panel module during the manufacturing process is being increased continuously. As the size of the solar panel increases, the siz... To increase the competition of the solar energy collection system, the size of the solar panel module during the manufacturing process is being increased continuously. As the size of the solar panel increases, the size of the robot to handle the panel increased also. The change in scale of the robot inevitably results ill the amplification of the adverse effect of tile flexure. The main source of the flexure in the large scale solar cell panel handling system is the long and thin fork fingers of the [land and the solar cell panel. In addition, tile belt-driven actuator system used by most of the large scale panel handling robot is another significant source of the vibration. In this paper, the flexible multi body dynamic model of a large scale solar cell panel handling robot, which is being designed and constructed with the help of Kyung Hee University, is developed. The belt-driven system in the robot is also modeled as flexible system and included ill the robot to represent the actual vibration characteristics of the actuator system. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301310] 展开更多
关键词 flexible belt drive flexible multi body dynalnics modeling panel handling robot
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部