The FCSE controlling equation of pinned thinwalled curve box was derived and the indeterminate problem of continuous thin-walled curve box with diaphragm was solved based on flexibility theory. With Bayesian statistic...The FCSE controlling equation of pinned thinwalled curve box was derived and the indeterminate problem of continuous thin-walled curve box with diaphragm was solved based on flexibility theory. With Bayesian statistical theory,dynamic Bayesian error function of displacement parameters of indeterminate curve box was founded. The corresponding formulas of dynamic Bayesian expectation and variance were deduced. Combined with one-dimensional Fibonacci automatic search scheme of optimal step size,the Powell optimization theory was utilized to research the stochastic identification of displacement parameters of indeterminate thin-walled curve box. Then the identification steps were presented in detail and the corresponding calculation procedure was compiled. Through some classic examples,it is obtained that stochastic performances of systematic parameters and systematic responses are simultaneously deliberated in dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step size is solved by adopting Fibonacci search method. And the Powell identification of displacement parameters of indeterminate thin-walled curve box has satisfied numerical stability and convergence,which demonstrates that the presented method and the compiled procedure are correct and reliable.During parameters鈥?iterative processes,the Powell theory is irrelevant with the calculation of finite curve strip element(FCSE) partial differentiation,which proves high computation effciency of the studied method.展开更多
With advances in modern agricultural parks,the rural energy structure has undergone profound change,leading to the emergence of an agricultural energy internet.This integrated system combines agricultural energy utili...With advances in modern agricultural parks,the rural energy structure has undergone profound change,leading to the emergence of an agricultural energy internet.This integrated system combines agricultural energy utilization,the information internet,and agricultural production.Accordingly,this study proposes a regulation flexibility assessment approach and optimal aggregation strategy of greenhouse loads(GHLs)for modern agricultural parks.First,taking into account the operational characteristics of typical GHLs,refined load demand models for lighting,humidification,and temperature-controlled loads are established.Secondly,the recursive least squares method-based parameter identification method is designed to accurately determine key GHL model parameters.Finally,based on the regulation flexibility of quantitatively evaluated GHLs,GHLs are optimally aggregated into multiple flexible aggregators considering minimal operational cost and greenhouse environmental constraints.The results indicate that the proposed regulation flexibility assessment approach and optimal aggregation strategy of GHLs can alleviate the peak regulation pressure on power grids by flexibly shifting the load demands of GHLs.展开更多
基金supported by the National Natural Science Foundation of China (10472045, 10772078 and 11072108)the Science Foundation of NUAA(S0851-013)
文摘The FCSE controlling equation of pinned thinwalled curve box was derived and the indeterminate problem of continuous thin-walled curve box with diaphragm was solved based on flexibility theory. With Bayesian statistical theory,dynamic Bayesian error function of displacement parameters of indeterminate curve box was founded. The corresponding formulas of dynamic Bayesian expectation and variance were deduced. Combined with one-dimensional Fibonacci automatic search scheme of optimal step size,the Powell optimization theory was utilized to research the stochastic identification of displacement parameters of indeterminate thin-walled curve box. Then the identification steps were presented in detail and the corresponding calculation procedure was compiled. Through some classic examples,it is obtained that stochastic performances of systematic parameters and systematic responses are simultaneously deliberated in dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step size is solved by adopting Fibonacci search method. And the Powell identification of displacement parameters of indeterminate thin-walled curve box has satisfied numerical stability and convergence,which demonstrates that the presented method and the compiled procedure are correct and reliable.During parameters鈥?iterative processes,the Powell theory is irrelevant with the calculation of finite curve strip element(FCSE) partial differentiation,which proves high computation effciency of the studied method.
基金the Science and Technology Project of State Grid Corporation of China(No.1400-202224249A-1-1-ZN)the National Natural Science Foundation of China(No.52077075 and No.72271068)+2 种基金the Foundations of Shenzhen and Technology Committee(No.GJHZ20210705141811036 and No.GXWD20220811151845006)the Major Science and Technology Special Projects in Xinjiang Autonomous Region(No.2022A01007)the Fundamental Research Funds for the Central Universities(No.2023JC001).
文摘With advances in modern agricultural parks,the rural energy structure has undergone profound change,leading to the emergence of an agricultural energy internet.This integrated system combines agricultural energy utilization,the information internet,and agricultural production.Accordingly,this study proposes a regulation flexibility assessment approach and optimal aggregation strategy of greenhouse loads(GHLs)for modern agricultural parks.First,taking into account the operational characteristics of typical GHLs,refined load demand models for lighting,humidification,and temperature-controlled loads are established.Secondly,the recursive least squares method-based parameter identification method is designed to accurately determine key GHL model parameters.Finally,based on the regulation flexibility of quantitatively evaluated GHLs,GHLs are optimally aggregated into multiple flexible aggregators considering minimal operational cost and greenhouse environmental constraints.The results indicate that the proposed regulation flexibility assessment approach and optimal aggregation strategy of GHLs can alleviate the peak regulation pressure on power grids by flexibly shifting the load demands of GHLs.