期刊文献+
共找到498篇文章
< 1 2 25 >
每页显示 20 50 100
Recent progress of self-supported air electrodes for flexible Zn-air batteries
1
作者 Chen Xu Yanli Niu +5 位作者 Vonika Ka-Man Au Shuaiqi Gong Xuan Liu Jianying Wang Deli Wu Zuofeng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期110-136,I0004,共28页
Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among... Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed. 展开更多
关键词 Bifunctional electrocatalysts Oxygen reduction reaction Oxygen evolution reaction self-supported air electrodes flexible zinc-air batteries
下载PDF
Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes 被引量:1
2
作者 Jianmin Yang Li Chang +2 位作者 Xiqi Zhang Ziquan Cao Lei Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期441-455,共15页
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr... The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials. 展开更多
关键词 Ionic liquids ASSEMBLY Silver nanowires MXene nanosheets flexible transparent electrodes
下载PDF
Synthesis of nanostructured zinc oxide and its composite with carbon dots for DSSCs applications using flexible electrode
3
作者 Habtamu Fekadu Etefa Francis Birhanu Dejene 《Materials Reports(Energy)》 EI 2024年第3期77-83,共7页
ZnO nanowires(ZnO NWs),ZnO nanoparticles(ZnO NPs)and carbon dots(C-dots)were synthesized by hydrothermal,sol-gel and hydrothermal methods respectively.They were also characterized and applied for dye sensitized solar ... ZnO nanowires(ZnO NWs),ZnO nanoparticles(ZnO NPs)and carbon dots(C-dots)were synthesized by hydrothermal,sol-gel and hydrothermal methods respectively.They were also characterized and applied for dye sensitized solar cells(DSSCs).The effects of C-dots on ZnO NWs and ZnO NPs have been evaluated.The C-dots were used at a mole ratio of citric acid(CA)to ethylene diamine(EDA)of 1:1.5.These C-dots were found to enhance the performance of the flexible electrode DSSCs.After the addition of C-dots,the power conversion efficiency(PCE)of ZnO NPs was boosted to be two times higher than that of ZnO NPs DSSCs without C-dots.Similarly,the ultraviolet(UV)-band revealed a blue shift,resulting in a lower band gap and a reduced charge transfer resistance,which can enhance the PCE of DSSCs.The loaded quantity on the flexible electrode substrate made of polyethylene terephthalate(PET)was optimized(50 mg).For DSSCs,the PET flexible electrode conductive polymer has produced positive outcomes.For ZnO NWs and ZnO NWs@C-dots,the PCE values were 1.45%and 4.25%;while for ZnO NPs and ZnO NPs@C-dots,they were 2.34%and 5.81%,respectively.This work achieved remarkable and competitive performance when compared to solid(indium tin oxides/glass)-based substrate. 展开更多
关键词 ZnO NWs@C-dots ZnO NPs@C-dots PET DSSCS flexible electrode
下载PDF
Self-supported metal(Fe, Co, Ni)-embedded nitrogen-doping carbon nanorod framework as trifunctional electrode for flexible Zn-air batteries and switchable water electrolysis 被引量:1
4
作者 Qiuyan Jin Liping Xiao +2 位作者 Weidong He Hao Cui Chengxin Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1644-1653,共10页
To meet the practical demand of wearable/portable electronics, developing high-efficiency and durable multifunctional catalyst and in-situ assembling catalysts into electrodes with flexible features are urgently neede... To meet the practical demand of wearable/portable electronics, developing high-efficiency and durable multifunctional catalyst and in-situ assembling catalysts into electrodes with flexible features are urgently needed but challenging. Herein, we report a simple route to fabricate bendable multifunctional electrodes by in-situ carbonization of metal ion absorbed polyaniline precursor. Alloy nanoparticles encapsulated in graphite layer are uniformly distributed in the N-doping carbon nanorod skeleton. Profiting from the favorable free-standing structure and the cooperative effect of metallic nanoparticles, graphitic layer and N doped-carbon architecture, the trifunctional electrodes exhibit prominent activities and stability toward HER, OER and ORR. Notably, due to the protection of carbon layer, the electrocatalysts show the reversible catalytic HER/OER properties. The overall water splitting device can continuously work for 12 h under frequent exchanges of cathode and anode. Importantly, the bendable metal air batteries fabricated by self-supported electrode not only displays the outstanding battery performance,achieving a decent peak power density(125 mW cm^(-2)) and exhibiting favorable charge-discharge durability of 22 h, but also holds superb flexible stability. Specially, a lightweight self-driven water splitting unit is demonstrated with stable hydrogen production. 展开更多
关键词 Trifunctional catalysts self-supported electrodes Switchable water splitting flexible Zn-air battery Self-powered system
下载PDF
Self-supported VO_(2)on polydopamine-derived pyroprotein-based fibers for ultrastable and flexible aqueous zinc-ion batteries
5
作者 Jeong Seok Yeon Sul Ki Park +10 位作者 Shinik Kim Santosh VMohite Won Il Kim Gun Jang Hyun-Seok Jang Jiyoung Bae Sang Moon Lee Won GHong Byung Hoon Kim Yeonho Kim Ho Seok Park 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to ... A conventional electrode composite for rechargeable zinc-ion batteries(ZIBs)includes a binder for strong adhesion between the electrode material and the current collector.However,the introduction of a binder leads to electrochemical inactivity and low electrical conductivity,resulting in the decay of the capacity and a low rate capability.We present a binder-and conducting agent-free VO_(2)composite electrode using in situ polymerization of dopamine on a flexible current collector of pyroprotein-based fibers.The as-fabricated composite electrode was used as a substrate for the direct growth of VO_(2)as a self-supported form on polydopamine-derived pyroprotein-based fibers(pp-fibers@VO_(2)(B)).It has a high conductivity and flexible nature as a current collector and moderate binding without conventional binders and conducting agents for the VO_(2)(B)cathode.In addition,their electrochemical mechanism was elucidated.Their energy storage is induced by Zn^(2+)/H^(+)coinsertion during discharging,which can be confirmed by the lattice expansion,the formation of by-products including Zn_(x)(OTf)_(y)(OH)_(2x−y)·nH_(2)O,and the reduction of V^(4+)to V^(3+).Furthermore,the assembled Zn//pp-fibers@VO_(2)(B)pouch cells have excellent flexibility and stable electrochemical performance under various bending states,showing application possibilities for portable and wearable power sources. 展开更多
关键词 aqueous battery binder free conducting agent‐free flexible electrode zinc‐ion battery
下载PDF
Recent advances in nanofiber-based flexible transparent electrodes 被引量:2
6
作者 Houchao Zhang Xiaoyang Zhu +11 位作者 Yuping Tai Junyi Zhou Hongke Li Zhenghao Li Rui Wang Jinbao Zhang Youchao Zhang Wensong Ge Fan Zhang Luanfa Sun Guangming Zhang Hongbo Lan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期144-198,共55页
Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alterna... Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics. 展开更多
关键词 NANOFIBER flexible transparent electrodes additive manufacturing flexible optoelectronic devices
下载PDF
Bifunctional flexible electrochromic energy storage devices based on silver nanowire flexible transparent electrodes 被引量:2
7
作者 He Zhang Fangyuan Sun +8 位作者 Ge Cao Dongyan Zhou Guofan Zhang Jiayun Feng Shang Wang Fengyu Su Yanqing Tian Yan Jun Liu Yanhong Tian 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期307-316,共10页
Flexible electrochromic energy storage devices(FECESDs)for powering flexible electronics have attracted considerable attention.Silver nanowires(AgNWs)are one kind of the most promising flexible transparent electrodes(... Flexible electrochromic energy storage devices(FECESDs)for powering flexible electronics have attracted considerable attention.Silver nanowires(AgNWs)are one kind of the most promising flexible transparent electrodes(FTEs)materials for the emerging flexible devices.Currently,fabricating FECESD based on AgNWs FTEs is still hindered by their intrinsic poor electrochemical stability.To address this issue,a hybrid AgNWs/Co(OH)_(2)/PEDOT:PSS electrode is proposed.The PEDOT:PSS could not only improve the resistance against electrochemical corrosion of AgNWs,but also work as functional layer to realize the color-changing and energy storage properties.Moreover,the Co(OH)_(2)interlayer further improved the color-changing and energy storage performance.Based on the improvement,we assembled the symmetrical FECESDs.Under the same condition,the areal capacitance(0.8 mF cm^(−2))and coloration efficiency(269.80 cm^(2)C−1)of AgNWs/Co(OH)_(2)/PEDOT:PSS FECESDs were obviously higher than AgNWs/PEDOT:PSS FECESDs.Furthermore,the obtained FECESDs exhibited excellent stability against the mechanical deformation.The areal capacitance remained stable during 1000 times cyclic bending with a 25 mm curvature radius.These results demonstrated the broad application potential of the AgNWs/Co(OH)_(2)/PEDOT:PSS FECESD for the emerging portable and multifunctional electronics. 展开更多
关键词 electrochromic device energy storage device silver nanowires flexible transparent electrode
下载PDF
Engineering Geometric Electrodes for Electric Field-Enhanced High-Performance Flexible In-Plane Micro-Supercapacitors
8
作者 Jihong Kim Sung Min Wi +9 位作者 Jong-Guk Ahn Sangjun Son Hee Young Lim Yeonsu Park Hye Ji Eun Jong Bae Park Hyunseob Lim Sangyeon Pak A-Rang Jang Young-Woo Lee 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期114-120,共7页
In plane micro-supercapacitors that are miniaturized energy storage components have attracted significant attention due to their high power densities for various ubiquitous and sustainable device systems as well as th... In plane micro-supercapacitors that are miniaturized energy storage components have attracted significant attention due to their high power densities for various ubiquitous and sustainable device systems as well as their facile integration on various flexible/wearable platform.To implement the micro-supercapacitors in various practical applications that can accompany solid state or gel electrolyte and flexible substrates,ions must be readily transported to electrodes for achieving high power densities.Herein,we show large enhancement in electrochemical properties of flexible,inplane micro-supercapacitor using sharp-edged interdigitated electrode design,which was simply fabricated through direct laser scribing method.The sharp-edged electrodes allowed strong electric field to be induced at the corners of the electrode fingers which led to the greater accumulation of ions near the surface of electrode,significantly enhancing the energy storage performance of micro-supercapacitors.The electric field-enhanced in-plane micro-supercapacitor showed the volumetric energy density of 1.52 Wh L^(−1)and the excellent cyclability with capacitive retention of 95.4%after 20000 cycles.We further showed various practicability of our sharp-edged design in micro-supercapacitors by showing circuit applicability,mechanical stability,and air stability.These results present an important pathway for designing electrodes in various energy storage devices. 展开更多
关键词 electric field enhancement flexible energy storage device microsupercapacitors sharp electrodes
下载PDF
Deciphering the lithium storage chemistry in flexible carbon fiber-based self-supportive electrodes 被引量:5
9
作者 Hao Yang Tuzhi Xiong +4 位作者 Zhixiao Zhu Ran Xiao Xincheng Yao Yongchao Huang M.-Sadeeq Balogun 《Carbon Energy》 SCIE CAS 2022年第5期820-832,共13页
Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.Howe... Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.However,during the intercalation of Li ions into the matrix of CFC(below 0.5 V vs.Li/Li+),the incompatibility in the capacity of the CFC,when used directly as an anode material or as a current collector for active materials,leads to difficulty in the estimation of its actual contribution.To address this issue,we prepared Ni_(5)P_(4)nanosheets on CFC(denoted CFC@Ni_(5)P_(4))and investigated the contribution of CFC in the CFC@Ni_(5)P_(4)by comparing to the powder Ni_(5)P_(4)nanosheets traditionally coated on a copper foil(CuF)(denoted P-Ni_(5)P_(4)).At a current density of 0.4 mA cm^(−2),the as-prepared CFC@Ni_(5)P_(4)showed an areal capacity of 7.38 mAh cm^(−2),which is significantly higher than that of the PNi_(5)P_(4)electrode.More importantly,theoretical studies revealed that the CFC has a high Li adsorption energy that contributes to the low Li-ion diffusion energy barrier of the Ni_(5)P_(4)due to the strong interaction between the CFC and Ni_(5)P_(4),leading to the superior Li-ion storage performance of the CFC@Ni_(5)P_(4)over the pristine Ni_(5)P_(4)sample.This present work unveils the underlying mechanism leading to the achievement of high performance in SSEMs. 展开更多
关键词 density functional theory flexible carbon fiber cloth lithium-ion batteries Ni5P4 self-supportive electrodes
下载PDF
High Areal Capacity and Long Cycle Life Flexible Mild Quasi-Solid-State Ag-Zn Battery with Dendrite-Free Anode
10
作者 Yanzhe Zhu Renbo Zhu +10 位作者 Fandi Chen Shuo Zhang Yu-Chieh Kuo Peiyuan Guan Mengyao Li Yunjian Liu Zhaojun Han Tao Wan Dawei Wang Caiyun Wang Dewei Chu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期34-41,共8页
Silver-zinc(Ag-Zn)batteries are a promising battery system for flexible electronics owing to their high safety,high energy density,and stable output voltage.However,poor cycling performance,low areal capacity,and infe... Silver-zinc(Ag-Zn)batteries are a promising battery system for flexible electronics owing to their high safety,high energy density,and stable output voltage.However,poor cycling performance,low areal capacity,and inferior flexibility limit the practical application of Ag-Zn batteries.Herein,we develop a flexible quasi-solid-state Ag-Zn battery system with superior performance by using mild electrolyte and binder-free electrodes.Copper foam current collector is introduced to impede the growth of Zn dendrite,and the structure of Ag cathode is engineered by electrodeposition and chloridization process to improve the areal capacity.This novel battery demonstrates a remarkable cycle retention of 90%for 200 cycles at 3 mA cm^(-2).More importantly,this binder-free battery can afford a high capacity of 3.5 mAh cm^(-2)at 3 mA cm^(-2),an outstanding power density of 2.42 mW cm^(-2),and a maximum energy density of 3.4 mWh cm^(-2).An energy management circuit is adopted to boost the output voltage of a single battery,which can power electronic ink display and Bluetooth temperature and humidity sensor.The developed battery can even operate under the extreme conditions,such as being bent and sealed in solid ice.This work offers a path for designing electrodes and electrolyte toward high-performance flexible Ag-Zn batteries. 展开更多
关键词 binder-free electrodes dendrite-free flexible Ag-Zn battery mild electrolyte quasi-solid-state
下载PDF
Emerging CoMn-LDH@MnO2 electrode materials assembled using nanosheets for flexible and foldable energy storage devices 被引量:10
11
作者 Yue Zhao Jiafeng He +3 位作者 Meizhen Dai Depeng Zhao Xiang Wu Baodan Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第6期67-73,I0003,共8页
CoMn layered double hydroxides(CoMn-LDH)are promising electrode materials for supercapacitors because of their excellent cyclic stability.However,they possess relatively low capacitances.In this work,hybrid CoMn-LDH@M... CoMn layered double hydroxides(CoMn-LDH)are promising electrode materials for supercapacitors because of their excellent cyclic stability.However,they possess relatively low capacitances.In this work,hybrid CoMn-LDH@MnO2 products grown on Ni foams were obtained through a facile hydrothermal method.The as-synthesized samples employed as electrodes deliver a specific capacitance of 2325.01 F g^-1 at 1 A g^-1.An assembled asymmetric supercapacitor using these products as positive electrodes shows a maximum energy density of 59.73 W h kg^-1 at 1000.09 W kg^-1.The prominent electrochemical performance of the as-prepared electrodes could be attributes to hierarchical structures.These findings suggest that hybrid structures might be potential alternatives for future flexible energy storage devices. 展开更多
关键词 CoMn-LDH@MnO2 electrode Specific capacitance flexible device Cyclic stability
下载PDF
Carbon-based flexible self-supporting cathode for lithium-sulfur batteries:Progress and perspective 被引量:10
12
作者 Qinghuiqiang Xiao Jinlin Yang +7 位作者 Xiaodong Wang Yirui Deng Peng Han Ning Yuan Lei Zhang Ming Feng Chang‐an Wang Ruiping Liu 《Carbon Energy》 CAS 2021年第2期271-302,共32页
The flexible self-supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity,which meets the requirements of flexible batteries.Lithium-sulfur batteries(LSBs),as... The flexible self-supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity,which meets the requirements of flexible batteries.Lithium-sulfur batteries(LSBs),as a new generation of energy storage system,hold much higher theoretical energy density than traditional batteries,and they have attracted extensive attention from both the academic and industrial communities.Selection of a proper substrate material is important for the flexible self-supporting electrode.Carbon materials,with the advantages of light weight,high conductivity,strong structural plasticity,and low cost,provide the electrode with a large loading space for the active material and a conductive network.This makes the carbon materials meet the mechanical and electrochemical requirements of flexible electrodes.In this paper,the commonly used fabrication methods and recent research progresses of the flexible self-supporting cathode with a carbon material as the substrate are introduced.Various sulfur loading methods are summarized,which provides useful information for the structural design of the cathode.As the first review article of the carbon-based flexible self-supporting LSB cathodes,it provides valuable guidance for the researchers working in the field of LSB. 展开更多
关键词 carbon flexible lithium sulfur batteries self-supporting
下载PDF
Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells 被引量:6
13
作者 Yumeng Xu Zhenhua Lin +4 位作者 Wei Wei Yue Hao Shengzhong Liu Jianyong Ouyang Jingjing Chang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期179-208,共30页
Flexible perovskite solar cells(FPSCs) have attracted enormous interest in wearable and portable electronics due to their high power-per-weight and low cost. Flexible and efficient perovskite solar cells require the d... Flexible perovskite solar cells(FPSCs) have attracted enormous interest in wearable and portable electronics due to their high power-per-weight and low cost. Flexible and efficient perovskite solar cells require the development of flexible electrodes compatible with the optoelectronic properties of perovskite. In this review, the recent progress of flexible electrodes used in FPSCs is comprehensively reviewed. The major features of flexible transparent electrodes, including transparent conductive oxides, conductive polymer, carbon nanomaterials and nanostructured metallic materials are systematically compared. And the corresponding modification strategies and device performance are summarized. Moreover, flexible opaque electrodes including metal films, opaque carbon materials and metal foils are critically assessed. Finally, the development directions and difficulties of flexible electrodes are given. 展开更多
关键词 flexible electrode flexible perovskite solar cell Carbon nanomaterials Metallic nanostructures Conductive oxide
下载PDF
High‑Performance Flexible Microneedle Array as a Low‑Impedance Surface Biopotential Dry Electrode for Wearable Electrophysiological Recording and Polysomnography 被引量:6
14
作者 Junshi Li Yundong Ma +13 位作者 Dong Huang Zhongyan Wang Zhitong Zhang Yingjie Ren Mengyue Hong Yufeng Chen Tingyu Li Xiaoyi Shi Lu Cao Jiayan Zhang Bingli Jiao Junhua Liu Hongqiang Sun Zhihong Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期142-163,共22页
Microneedle array(MNA)electrodes are an effective solution to achieve high-quality surface biopotential recording without the coordination of conductive gel and are thus very suitable for long-term wearable applicatio... Microneedle array(MNA)electrodes are an effective solution to achieve high-quality surface biopotential recording without the coordination of conductive gel and are thus very suitable for long-term wearable applications.Existing schemes are limited by flexibility,biosafety,and manufacturing costs,which create large barriers for wider applications.Here,we present a novel flexible MNA electrode that can simultaneously achieve flexibility of the substrate to fit a curved body surface,robustness of microneedles to penetrate the skin without fracture,and a simplified process to allow mass production.The compatibility with wearable wireless systems and the short preparation time of the electrodes significantly improves the comfort and convenience of electrophysiological recording.The normalized electrode–skin contact impedance reaches 0.98 kΩcm^(2)at 1 kHz and 1.50 kΩcm^(2)at 10 Hz,a record low value compared to previous reports and approximately 1/250 of the standard electrodes.The morphology,biosafety,and electrical/mechanical properties are fully characterized,and wearable recordings with a high signal-to-noise ratio and low motion artifacts are realized.The first reported clinical study of microneedle electrodes for surface electrophysiological monitoring was conducted in tens of healthy and sleep-disordered subjects with 44 nights of recording(over 8 h per night),providing substantial evidence that the electrodes can be leveraged to substitute for clinical standard electrodes. 展开更多
关键词 flexible microneedle array Dry electrode Low-impedance electrode–skin contact Wearable wireless electrophysiological recording POLYSOMNOGRAPHY
下载PDF
Self-supporting NiFe LDH-MoS_(x) integrated electrode for highly efficient water splitting at the industrial electrolysis conditions 被引量:3
15
作者 Han Zhang Guoqiang Shen +3 位作者 Xinying Liu Bo Ning Chengxiang Shi Lun Pan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1732-1741,共10页
Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for ... Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2) under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2) under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2) for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2) at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis. 展开更多
关键词 self-supporting integrated electrode NiFe LDH Electronic structure modulation Industrial alkaline water electrolysis Membrane-electrode assembly
下载PDF
High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes 被引量:5
16
作者 He Zhang Shang Wang +6 位作者 Yanhong Tian Jiayue Wen Chunjin Hang Zhen Zheng Yilong Huang Su Ding Chenxi Wang 《Nano Materials Science》 CAS 2020年第2期164-171,共8页
Copper nanowires(Cu NWs)are considered an excellent alternative to indium tin oxide(ITO)in flexible transparency electrodes(FTEs).However,the mixed particles and surface oxidation of Cu NWs degrade the transmittance a... Copper nanowires(Cu NWs)are considered an excellent alternative to indium tin oxide(ITO)in flexible transparency electrodes(FTEs).However,the mixed particles and surface oxidation of Cu NWs degrade the transmittance and conductivity of the electrodes.Therefore,highly purified Cu NWs without oxidation are vital for high-performance FTEs.Herein,a facile and effective purification process is introduced to purify Cu NWs in a water and n-hexane system,which takes advantage of the differences in hydrophilicity between Cu NWs and Cu NPs caused by their different adsorption affinities to octadecylamine(ODA).At the same sheet resistance,the transmittance of the purified Cu NW-based FTEs improved approximately 2%compared to that of non-purified Cu NW-based FTEs.Immersion of the electrode in glacial acetic acid removed the surface organics and oxides.After only 40 s of treatment,the sheet resistance dramatically decreased from 10^5 Ohm/sq to 31 Ohm/sq with a transmittance of 85%.In addition,the Cu NW-based FTE conductors showed excellent flexibility(remaining stable after 1000 bending cycles).The Cu NW-based FTEs were further applied to fabricate a flexible transparent heater.At a voltage of 10 V,the temperature of the heater reached 73℃,demonstrating the potential applications of this material in various fields. 展开更多
关键词 Copper nanowires PURIFICATION Transparent electrode flexible electronics
下载PDF
Solution‑Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency 被引量:5
17
作者 Juanyong Wan Yonggao Xia +8 位作者 Junfeng Fang Zhiguo Zhang Bingang Xu Jinzhao Wang Ling Ai Weijie Song Kwun Nam Hui Xi Fan Yongfang Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期39-52,共14页
Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through soluti... Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through solution manufacturing.Herein,we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid(CF3SO3H).Through a low-concentration and low-temperature CF3SO3H doping,the conducting polymer anodes exhibited a main sheet resistance of 35Ωsq−1(minimum value:32Ωsq−1),a raised work function(≈5.0 eV),a superior wettability,and a high electrical stability.The high work function minimized the energy level mismatch among the anodes,hole-transporting layers and electron-donors of the active layers,thereby leading to an enhanced carrier extraction.The solution-processed flexible OSCs yielded a record-high efficiency of 16.41%(maximum value:16.61%).Besides,the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85°C,demonstrating a high flexibility and a good thermal stability. 展开更多
关键词 Solution-processed transparent conducting electrode flexible organic solar cell PEDOT:PSS Trifluoromethanesulfonic acid doping Solution processing
下载PDF
Low temperature fabrication of flexible carbon counter electrode on ITO-PEN for dye-sensitized solar cells 被引量:1
18
作者 Li Li Chen Jia Liu +3 位作者 Jing Bo Zhang Xiao Wen Zhou Xiao Ling Zhang Yuan Lin 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第9期1137-1140,共4页
A novel low temperature method was used to prepare the mesoporous carbon(MC) counter electrode(CE) on indium-doped tin oxide coated polyethylene naphthalate(ITO-PEN) for flexible dye-sensitized solar cells(DSSC... A novel low temperature method was used to prepare the mesoporous carbon(MC) counter electrode(CE) on indium-doped tin oxide coated polyethylene naphthalate(ITO-PEN) for flexible dye-sensitized solar cells(DSSCs).The obtained flexible MC CEs with carbon loading of 280μg cm^(-2) were characterized by SEM,XRD and electrochemical impedance.The light-to-electricity conversion efficiency of the DSSC fabricated with the prepared flexible MC CE was 86%of that of DSSC based on the decomposited Pt CE. 展开更多
关键词 Mesoporous carbon flexible counter electrode Dye-sensitized solar cells
下载PDF
Advanced flexible electrode materials and structural designs for sodium ion batteries 被引量:1
19
作者 Lina Zhao Zhehao Qu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期108-128,I0004,共22页
With the spectacular rise of wearable and portable electronics,flexible power supplying systems with robust mechanical flexibility and high energy storage performance under various mechanical deformation conditions ar... With the spectacular rise of wearable and portable electronics,flexible power supplying systems with robust mechanical flexibility and high energy storage performance under various mechanical deformation conditions are imperative to be needed.Sodium ion batteries(SIBs)with sustainable natural abundance,low cost and superb properties similar to equivalent lithium ion batteries(LIBs),which have shown significant potentials as energy source for flexible electronic devices.In this review,the recent advances in flexible electrode materials based on different types of conductive substrates are addressed and the strategies underlying rational design for flexible structures are highlighted,as well as their applications in flexible SIBs.The remaining key challenges in rational electrodes design are discussed,and perspectives for practical applications of flexible SIBs are proposed as general guidance for future research of high-performance flexible SIBs. 展开更多
关键词 flexible electronics Wearable devices Energy storage Sodium ion batteries flexible electrode
下载PDF
High loading carbon nanotubes deposited onto porous nickel yarns by solution imbibition as flexible wire-shaped supercapacitor electrodes 被引量:1
20
作者 Chaoqun Kang Dashun Cao +5 位作者 Yuejiao Liu Zhiwei Liu Ruiqing Liu Xiaomiao Feng Dan Wang Yanwen Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期836-842,共7页
The deposition of active materials directly onto metal wires is a general strategy to prepare wire-shaped electrodes for flexible and wearable energy storage devices. However, it is still a critical challenge to coat ... The deposition of active materials directly onto metal wires is a general strategy to prepare wire-shaped electrodes for flexible and wearable energy storage devices. However, it is still a critical challenge to coat active materials onto the aimed metal wires because of their smooth surface and small specific surface area. In this work, high porous nickel yarns(PNYs) was fabricated using commercial nylon yarns as templates through step-wise electroless plating, electroplating and calcination processes. The PNYs are composed of multiplied fibers with hollow tubular structure of 5–10 μm in diameter, allowing the imbibition of carbon nanotubes(CNTs) solution by a facile capillary action process. The prepared CNTs/PNY electrodes showed a typical electrochemical double layer capacitive performance and the constructed allsolid flexible wire-shaped symmetric supercapacitors provided a specific capacitance of 4.67 F/cm3 with good cycling stability at a current density of 0.6 A/cm3. 展开更多
关键词 Porous-yarn flexible supercapacitor Adsorption phenomenon Capillary action Wire-shaped electrode
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部