In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter pertur...In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter perturbation caused by the uncertainty derived from grasping mass variation cannot be ignored.The existence of vibration and parameter perturbation makes the rotation control of flexible manipulators difficult,which seriously affects the operation accuracy of manipulators.What’s more,the complex dynamic coupling brings great challenges to the dynamics modeling and vibration analysis.To solve this problem,this paper takes the space flexible manipulator with an underactuated hand(SFMUH)as the research object.The dynamics model considering flexibility,multiple nonlinear elements and disturbance torque is established by the assumed modal method(AMM)and Hamilton’s principle.A dynamic modeling simplification method is proposed by analyzing the nonlinear terms.What’s more,a sliding mode control(SMC)method combined with the radial basis function(RBF)neural network compensation is proposed.Besides,the control law is designed using a saturation function in the control method to weaken the chatter phenomenon.With the help of neural networks to identify the uncertainty composition in the SFMUH,the tracking accuracy is improved.The results of ground control experiments verify the advantages of the control method for vibration suppression of the SFMUH.展开更多
This paper deals with a flexible macro-micro manipulator system, which includes a long flexible manipulator and a relatively short rigid manipulator attached to the tip of the macro manipulator. A flexible macro manip...This paper deals with a flexible macro-micro manipulator system, which includes a long flexible manipulator and a relatively short rigid manipulator attached to the tip of the macro manipulator. A flexible macro manipulator possesses the advantages of wide operating range, high speed, and low energy consumption, but the disadvantage of a low tracking precision. The macro-micro manipulator system improves tracking performance by compensating for the endpoint tracking error while maintaining the advantages of the flexible macro manipulator. A trajectory planning scheme was built utilizing the task space division method. The division point is chosen to optimize the error compensation and energy consumption for the whole system. Then movements of the macro-micro manipulator can be determined using separate inverse kinematic models. Simulation results for a planar 4-DOF macro-micro manipulator system are presented to show the effectiveness of the control system.展开更多
基金supported by the National Natural Science Foundation of China(No.52275090)the Fundamental Research Funds for the Central Universities(No.N2103025)+1 种基金the National Key Research and Development Program of China(No.2020YFB2007802)the Applied Basic Research Program of Liaoning Province(No.2023JH2/101300159)。
文摘In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter perturbation caused by the uncertainty derived from grasping mass variation cannot be ignored.The existence of vibration and parameter perturbation makes the rotation control of flexible manipulators difficult,which seriously affects the operation accuracy of manipulators.What’s more,the complex dynamic coupling brings great challenges to the dynamics modeling and vibration analysis.To solve this problem,this paper takes the space flexible manipulator with an underactuated hand(SFMUH)as the research object.The dynamics model considering flexibility,multiple nonlinear elements and disturbance torque is established by the assumed modal method(AMM)and Hamilton’s principle.A dynamic modeling simplification method is proposed by analyzing the nonlinear terms.What’s more,a sliding mode control(SMC)method combined with the radial basis function(RBF)neural network compensation is proposed.Besides,the control law is designed using a saturation function in the control method to weaken the chatter phenomenon.With the help of neural networks to identify the uncertainty composition in the SFMUH,the tracking accuracy is improved.The results of ground control experiments verify the advantages of the control method for vibration suppression of the SFMUH.
基金the National Natural Science Foundation of China (No. 60305008)
文摘This paper deals with a flexible macro-micro manipulator system, which includes a long flexible manipulator and a relatively short rigid manipulator attached to the tip of the macro manipulator. A flexible macro manipulator possesses the advantages of wide operating range, high speed, and low energy consumption, but the disadvantage of a low tracking precision. The macro-micro manipulator system improves tracking performance by compensating for the endpoint tracking error while maintaining the advantages of the flexible macro manipulator. A trajectory planning scheme was built utilizing the task space division method. The division point is chosen to optimize the error compensation and energy consumption for the whole system. Then movements of the macro-micro manipulator can be determined using separate inverse kinematic models. Simulation results for a planar 4-DOF macro-micro manipulator system are presented to show the effectiveness of the control system.