In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which ta...In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which takes into account the additional stiffness terms,is derived based on Lagrange Analytical Mechanics theory and Hertz contact theory.Finite element method is employed for the discretization of the thin-walled plate.The results show that the traditional dynamic model without considering the additional stiffness terms will be difficult to reach steady state.The method proposed in this paper can correctly predict the dynamic behavior of the system.展开更多
Mechanization Takes Command is the title of a book written by Sigfrid Giedion in 1948,which can be considered the first essay on the history of technology,where great importance is given to the furniture too.It covers...Mechanization Takes Command is the title of a book written by Sigfrid Giedion in 1948,which can be considered the first essay on the history of technology,where great importance is given to the furniture too.It covers almost a millennium of inventions.Mechanical furniture helps us to save space,they can transform the rooms where we are living or working.Mechanization is a concept not only referred to an object.What I would like to analyse in this paper is the comparison of three levels of mechanization in housing projects,each able to modify and transform spaces,acting on the single room,on the internal volume and also on the façade.展开更多
Recent developments in micro- and nano-satellites have attracted the interest of the research community worldwide. Many colleges and corporations have launched their satellites in space. Meanwhile, the space flexible ...Recent developments in micro- and nano-satellites have attracted the interest of the research community worldwide. Many colleges and corporations have launched their satellites in space. Meanwhile, the space flexible probe-cone docking system for micro- and nano-satellites has become an attractive topic. In this paper, a dynamic model of a space flexible probe-cone dock- ing system, in which the flexible beam technology is applied, is built based on the Kane method. The curves of impact force versus time are obtained by the Lagrange model, the Kane model, and the experimental method. The Lagrange model was presented in the reference and verified by both finite element simulation and experiment. The results of the three methods show good agreements on the condition that the beam flexibility and the initial relative velocity change. It is worth mentioning that the introduction of vectorial mechanics and analytical mechanics in the Kane method leads to a large reduction of differential operations and makes the modeling process much easier than that of the Lagrange method. Moreover, the influences of the beam flexibility and the initial relative velocity are discussed. It is concluded that the initial relative velocity of space docking operation should be controlled to a certain value in order to protect the docking system.展开更多
Electromagnetic vibration energy harvesters are promising for the power supply of wireless sensor nodes,small electronic devices,and wearable electronics.Conventional electromagnetic harvesters usually increase output...Electromagnetic vibration energy harvesters are promising for the power supply of wireless sensor nodes,small electronic devices,and wearable electronics.Conventional electromagnetic harvesters usually increase output by increasing the size of coils and magnets,limiting the improvement of energy conversion efficiency and power density.In this study,multilayer microelectromechanical system(MEMS)coils were prepared using flexible electronics,and their high integration performance in arbitrary space was utilized to greatly improve the utilization of the space magnetic field by the electromagnetic harvester.The core magnet of the generator was magnetically balanced to achieve levitation,which improved the sensitivity and reduced fatigue damage compared with traditional spring structures.The wound coils on the top and bottom of the magnet and the flexible coils on the sides worked together to improve the energy efficiency and output of the devices.The output performance of the device with different number distributions was simulated using mathematical models to obtain the optimal structural parameters.The results show that by introducing flexible multilayer MEMS coils on the side surface of the energy harvester,the open-circuit voltage of the energy generators increased from 7 to 10 V by more than 43%.Flexible multilayer MEMS coils can enhance energy conversion rates and possess compact dimensions,making them suitable for integration onto complex surfaces.After the vibration energy harvesting system testing,the maximum peak power of the harvester was 7.1 m W at an acceleration of1 g and a resonant frequency of 11 Hz with a resistor of 3.5 kΩinternal resistance.Moreover,a 470μF capacitor can be charged to 3.5 V within 10 s to drive a hygrothermograph to work for more than 80 s and can supply a light bulb continuously.This strategy shows the great potential of vibration-energy-driven electromagnetic generators for powering small electronics in limited spaces.展开更多
基金Supported by the National Natural Science Foundation of China(91216201,11725211)
文摘In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which takes into account the additional stiffness terms,is derived based on Lagrange Analytical Mechanics theory and Hertz contact theory.Finite element method is employed for the discretization of the thin-walled plate.The results show that the traditional dynamic model without considering the additional stiffness terms will be difficult to reach steady state.The method proposed in this paper can correctly predict the dynamic behavior of the system.
文摘Mechanization Takes Command is the title of a book written by Sigfrid Giedion in 1948,which can be considered the first essay on the history of technology,where great importance is given to the furniture too.It covers almost a millennium of inventions.Mechanical furniture helps us to save space,they can transform the rooms where we are living or working.Mechanization is a concept not only referred to an object.What I would like to analyse in this paper is the comparison of three levels of mechanization in housing projects,each able to modify and transform spaces,acting on the single room,on the internal volume and also on the façade.
基金supported in part by the National Natural Science Foundation of China (Nos. 91216201, 51205403)
文摘Recent developments in micro- and nano-satellites have attracted the interest of the research community worldwide. Many colleges and corporations have launched their satellites in space. Meanwhile, the space flexible probe-cone docking system for micro- and nano-satellites has become an attractive topic. In this paper, a dynamic model of a space flexible probe-cone dock- ing system, in which the flexible beam technology is applied, is built based on the Kane method. The curves of impact force versus time are obtained by the Lagrange model, the Kane model, and the experimental method. The Lagrange model was presented in the reference and verified by both finite element simulation and experiment. The results of the three methods show good agreements on the condition that the beam flexibility and the initial relative velocity change. It is worth mentioning that the introduction of vectorial mechanics and analytical mechanics in the Kane method leads to a large reduction of differential operations and makes the modeling process much easier than that of the Lagrange method. Moreover, the influences of the beam flexibility and the initial relative velocity are discussed. It is concluded that the initial relative velocity of space docking operation should be controlled to a certain value in order to protect the docking system.
基金supported by the National Key R&D Program of China(Grant No.2019YFE0120300)the National Natural Science Foundation of China(Grant Nos.62171414,52175554,&52205608)the Fundamental Research Program of Shanxi Province(Grant Nos.20210302123059 and 20210302124610)。
文摘Electromagnetic vibration energy harvesters are promising for the power supply of wireless sensor nodes,small electronic devices,and wearable electronics.Conventional electromagnetic harvesters usually increase output by increasing the size of coils and magnets,limiting the improvement of energy conversion efficiency and power density.In this study,multilayer microelectromechanical system(MEMS)coils were prepared using flexible electronics,and their high integration performance in arbitrary space was utilized to greatly improve the utilization of the space magnetic field by the electromagnetic harvester.The core magnet of the generator was magnetically balanced to achieve levitation,which improved the sensitivity and reduced fatigue damage compared with traditional spring structures.The wound coils on the top and bottom of the magnet and the flexible coils on the sides worked together to improve the energy efficiency and output of the devices.The output performance of the device with different number distributions was simulated using mathematical models to obtain the optimal structural parameters.The results show that by introducing flexible multilayer MEMS coils on the side surface of the energy harvester,the open-circuit voltage of the energy generators increased from 7 to 10 V by more than 43%.Flexible multilayer MEMS coils can enhance energy conversion rates and possess compact dimensions,making them suitable for integration onto complex surfaces.After the vibration energy harvesting system testing,the maximum peak power of the harvester was 7.1 m W at an acceleration of1 g and a resonant frequency of 11 Hz with a resistor of 3.5 kΩinternal resistance.Moreover,a 470μF capacitor can be charged to 3.5 V within 10 s to drive a hygrothermograph to work for more than 80 s and can supply a light bulb continuously.This strategy shows the great potential of vibration-energy-driven electromagnetic generators for powering small electronics in limited spaces.